【題目】如圖,在四棱錐中,,,平面,點在棱上.
(Ⅰ)求證:平面平面;
(Ⅱ)若直線平面,求此時三棱錐的體積.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
(I)先利用正弦定理以及三角形內角和定理證明,結合可得平面,由此能證明平面平面;(II)連結與交于點,連結 ,可證明,由=,由此能求出三棱推的體積.
(Ⅰ)因為AB⊥平面PAD,
所以AB⊥DP,
又因為,AP=2,∠PAD=60°,
由,可得,所以∠PDA=30°,
所以∠APD=90°,即DP⊥AP,
因為,所以DP⊥平面PAB,
因為,所以平面PAB⊥平面PCD
(Ⅱ)連結AC,與BD交于點N,連結MN,因為PA//平面MBD,
MN為平面PAC與平面MBD的交線,所以PA//MN,
所以,
在四邊形ABCD中,因為AB//CD,所以,
所以,,.
因為AB⊥平面PAD,所以AB⊥AD,且平面APD⊥平面ABCD,
在平面PAD中,作PO⊥AD,則PO⊥平面ABCD,
因為,
所以
因為CD=3.所以,
所以.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)已知點,直線與曲線交于兩點,且,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓錐(其中為頂點,為底面圓心)的側面積與底面積的比是,則圓錐與它外接球(即頂點在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓E的長軸和短軸為對角線的四邊形的面積為.
(1)求橢圓E的方程;
(2)若直線與橢圓E相交于A,B兩點,設P為橢圓E上一動點,且滿足(O為坐標原點).當時,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假,因為“新冠”疫情全體學生只能在家進行網上學習,為了研究學生網上學習的情況,某學校隨機抽取名學生對線上教學進行調查,其中男生與女生的人數之比為,抽取的學生中男生有人對線上教學滿意,女生中有名表示對線上教學不滿意.
(1)完成列聯表,并回答能否有的把握認為“對線上教學是否滿意 與性別有關”;
態(tài)度 性別 | 滿意 | 不滿意 | 合計 |
男生 | |||
女生 | |||
合計 | 100 |
(2)從被調查的對線上教學滿意的學生中,利用分層抽樣抽取名學生,再在這名學生中抽取名學生,作線上學習的經驗介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商店銷售某海鮮,統計了春節(jié)前后50天該海鮮的需求量(,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價處理,每處理1公斤虧損10元;若供不應求,可從其它商店調撥,銷售1公斤可獲利30元.假設商店每天該海鮮的進貨量為14公斤,商店的日利潤為元.
(1)求商店日利潤關于需求量的函數表達式;
(2)假設同組中的每個數據用該組區(qū)間的中點值代替.
①求這50天商店銷售該海鮮日利潤的平均數;
②估計日利潤在區(qū)間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校周五的課程表設計中,要求安排8節(jié)課(上午4節(jié)下午4節(jié)),分別安排語文數學英語物理化學生物政治歷史各一節(jié),其中生物只能安排在第一節(jié)或最后一節(jié),數學和英語在安排時必須相鄰(注:上午的最后一節(jié)與下午的第一節(jié)不記作相鄰),則周五的課程順序的編排方法共有( ).
A.4800種B.2400種C.1200種D.240種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,點在橢圓上,點滿足以為直徑的圓過橢圓的上頂點.
(1)求橢圓的方程;
(2)已知直線過右焦點與橢圓交于兩點,在軸上是否存在點使得為定值?如果存在,求出點的坐標;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com