3.設(shè)x∈R,向量$\overrightarrow a=(x,1),\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,則$|{\overrightarrow a}|$=( 。
A.$\sqrt{5}$B.$2\sqrt{5}$C.10D.$\sqrt{10}$

分析 向量的數(shù)量積先求出x的值,再求出向量的模即可.

解答 解:向量$\overrightarrow a=(x,1),\overrightarrow b=(1,-2)$,且$\overrightarrow a⊥\overrightarrow b$,
∴x-2=0,
解得x=2,
∴$|{\overrightarrow a}|$=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
故選:A.

點(diǎn)評(píng) 本題考查了向量的垂直和向量的數(shù)量積和向量的模,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知${a_1}=1,{a_{n+1}}=3{S_n}+1,n∈{N^*}$.
(1)求a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.“x<0”是“x2+x<0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.線性回歸方程表示的直線=a+bx,必定過(guò)(  )
A.(0,0)點(diǎn)B.( $\overline{x}$,$\overline{y}$) 點(diǎn)C.(0,$\overline{y}$)點(diǎn)D.( $\overline{x}$,0)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={x|(x-3)(x+2)<0},B={-4,-1,0,1,3},則A∩B=( 。
A.{-1,0,1}B.{-1,0,1,3}C.{0,1}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知$f(x)=\frac{1}{2}{x^2}+2mlnx-(2+m)x,m∈R$.
(I)當(dāng)m>0時(shí),討論f(x)的單調(diào)性;
(II)若對(duì)任意的a,b∈(0,+∞)且a>b有f(a)-f(b)>m(b-a)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=ax-lnx(a∈R).
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若存在x∈[1,3],使$\frac{f(x)}{{x}^{2}}$+lnx=2成立,求a的取值范圍;
(3)若對(duì)任意的x∈[1,+∞),有f(x)≥f($\frac{1}{x}$)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在如圖所示的四棱錐S-ABCD中,∠DAB=∠ABC=90°,SA=AB=BC=1,AD=3.
(1)在棱SA上確定一點(diǎn)M,使得BM∥平面SCD,保留作圖痕跡,并證明你的結(jié)論.
(2)當(dāng)SA⊥平面ABCD且點(diǎn)E為線段BS的三等分點(diǎn)(靠近B)時(shí),求三棱錐S-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在如圖所示正方體ABCD-A1B1C1D1中,E是BC1與B1C的交點(diǎn),給出編號(hào)為①②③④⑤的五個(gè)圖,則四面體A1-CC1E的側(cè)視圖和俯視圖分別為( 。
A.①和⑤B.②和③C.④和⑤D.④和③

查看答案和解析>>

同步練習(xí)冊(cè)答案