9.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(1)求實數(shù)a、b的值;
(2)若不等式$f({log_2}k)>f(\frac{3}{2})$成立,求實數(shù)k的取值范圍;
(3)對于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N,n≥3)的自變量x0,x1,x2,…,xn-1,xn,如果存在一個常數(shù)M>0,使得定義在區(qū)間[p,q]上的一個函數(shù)m(x),有|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱m(x)為區(qū)間[p,q]上的有界變差函數(shù),試判斷f(x)是否區(qū)間[0,3]上的有界變差函數(shù),若是,求出M的最小值;若不是,請說明理由.

分析 (1)由g(x)的對稱軸x=1得g(x)在區(qū)間[2,3]上是增函數(shù),得方程組求出a,b即可;
(2)由(1)求出f(x)的表達式,解不等式求出即可;
(3)由f(x)的表達式得f(x)為[0,3]上的單調(diào)遞增函數(shù),根據(jù)有界變差函數(shù)的概念求出即可.

解答 解:(1)∵g(x)=a(x-1)2+1+b-a,
又a>0,∴g(x)在區(qū)間[2,3]上是增函數(shù),
故g(2)=1,g(3)=4,
解得:a=1,b=0.  
(2)由(1)得:g(x)=x2-2x+1,
故f(x)=x2-2|x|+1是偶函數(shù),
∴不等式$f({log_2}k)>f(\frac{3}{2})$可化為|log2k|>$\frac{3}{2}$,
解得:k∈(0,$\frac{\sqrt{2}}{4}$)∪(2$\sqrt{2}$,+∞).  
(3)∵f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+1,x≥1}\\{{x}^{2}+2x+1,x<1}\end{array}\right.$,
∴f(x)為[0,1]上單調(diào)遞減,[1,3]上的單調(diào)遞增函數(shù),
則對于任意滿足1=x0<x1<x2<…<xn-1<xn=3(n∈N*,n≥3)的自變量x0,x1,x2,…,xn
有f(1)=f(x0)<f(x1)<f(x2)<…<f(xn-1)<f(xn)=f(3),
∴|f(x1)-f(x0)|+|f(x2)-f(x1)|+…+|f(xn)-f(xn-1)|
=f(x1)-f(x0)+f(x2)-f(x1)+…+f(xn)-f(xn-1
=f(xn)-f(xn-1
=f(3)-f(1)
=4,
∴存在常數(shù)M≥4,使得|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M.  
函數(shù)f(x)為區(qū)間[0,3]上的有界變差函數(shù).即M的最小值為4.

點評 本題考查函數(shù)的性質(zhì),導數(shù)的應用,函數(shù)的單調(diào)性,新概念問題,是一道綜合題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$f(x)={(\frac{1}{2})^{mx}}$,m為常數(shù),且函數(shù)的圖象過點(1,2)
(1)求m的值;
(2)若g(x)=4x-6,且g(x)=f(x),求滿足條件的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知點A(1,2$\sqrt{2}$),B(0,0),C(1,0),設∠BAC的平分線AE與BC相交于E,如果$\overrightarrow{BC}$=λ$\overrightarrow{CE}$,那么λ等于-$\frac{3+2\sqrt{2}}{2\sqrt{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知g(x)=ex(cosx+a)(a∈R)是R上的增函數(shù),則實數(shù)a的取值范圍為( 。
A.[2,+∞)B.(2,+∞)C.[$\sqrt{2}$,+∞)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖所示,已知點G是△ABC的重心,過點G作直線與AB,AC兩邊分別交于M,N兩點,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,則x+2y的最小值為( 。
A.2B.$\frac{1}{3}$C.$\frac{{3+2\sqrt{2}}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{3^{x+1}}(x≤0)\\{log_2}x(x>0)\end{array}$,則不等式f(x)>3的解集為(  )
A.(8,+∞)B.(-∞,0)∪(8,+∞)C.(0,8)D.(-∞,0)∪(0,8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知p:A={x|x2-(a+1)x+a≤0},q:B={x|x2-3x+2≤0},若p是q的充分而不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖,在△ABC中,AB=2,BC=3,∠ABC=60°,AH⊥BC于點H,M為AH的中點,若$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$,則λ+μ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知i為虛數(shù)單位,若復數(shù)z滿足z=i•(2015+2016i),則$\overline z$為( 。
A.2015+2016iB.2015-2016iC.-2016+2015iD.-2016-2015i

查看答案和解析>>

同步練習冊答案