【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相。某超市計劃每年六月從精準扶貧戶中訂購荔枝,每天進貨量相同且每公斤20元,當日18時前售價為每公斤24元,18時后以每公斤16元的價格銷售完畢。根據(jù)往年情況,每天的荔枝需求量與當天平均氣溫有關(guān),如下表表示:

平均氣溫t(攝氏度)

需求量n(公斤)

50

100

200

300

為了確定今年6月1日6月30日的日購數(shù)量,統(tǒng)計了前三年六月各天的平均氣溫,得到如下的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(1)假設(shè)該超市在以往三年內(nèi)的六月每天進貨100公斤,求荔枝為超市帶來的日平均利潤(結(jié)果取整數(shù)).

(2)若今年該超市進貨量為200公斤,以記錄的各需求量的頻率作為相應的概率,求當天超市不虧損的概率.

【答案】(1)391元;(2).

【解析】

(1)先計算n<100時,荔枝為該商場帶來的利潤,再計算這90天荔枝每天為該商場帶來的平均利潤.(2)先分析得到當天該商場不虧損,則當天荔枝的需求量為100、200或300公斤,再求當天超市不虧損的概率.

(1)當需求量時,荔枝為該商場帶來的利潤為元;

當需求量,即時,荔枝為該商場帶來的利潤為元;

所以這90天荔枝每天為該商場帶來的平均利潤為元.

(2)當需求量時,荔枝為該商場帶來的利潤為元;

當需求量時,荔枝為該商場帶來的利潤為元;

當需求量時,荔枝為該商場帶來的利潤為元;

所以當天該商場不虧損,則當天荔枝的需求量為100、200或300公斤,

則所求概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)若有極小值且極小值為0,求的值;

(2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),若存在距離為的兩條直線,使得對任意的都有,則稱函數(shù)有一個寬為的通道.給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度為1的函數(shù)由__________ (寫出所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家放開二胎政策后,不少家庭開始生育二胎,隨機調(diào)查110名性別不同且為獨生子女的高中生,其中同意生二胎的高中生占隨機調(diào)查人數(shù)的,統(tǒng)計情況如下表:

同意

不同意

合計

男生

20

女生

20

合計

110

(l)求,的值

(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認為同意生二胎與性別有關(guān)?請說明理由.

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為,以原點為極點,以軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)寫出曲線的極坐標方程和直線的直角坐標方程;

(2)若射線與曲線交于兩點,與直線交于點,射線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若存在,使得,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)zbi(bR),是純虛數(shù),i是虛數(shù)單位.

(1)求復數(shù)z;

(2)若復數(shù)(mz)2所表示的點在第二象限,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】( 本小題滿分14)

如圖,在三棱錐PABC中,PC底面ABC,ABBC,DE分別是AB,PB的中點.

(1)求證:DE平面PAC

(2)求證:ABPB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABCa=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

同步練習冊答案