2.已知數(shù)列{an}是等差數(shù)列,若a4+2a6+a8=12,則該數(shù)列前11項(xiàng)的和為(  )
A.10B.12C.24D.33

分析 由a4+2a6+a8=12,利用等差數(shù)列的性質(zhì)可得:4a6=12,解得a6.再利用求和公式即可得出.

解答 解:由a4+2a6+a8=12,利用等差數(shù)列的性質(zhì)可得:4a6=12,解得a6=3.
∴該數(shù)列前11項(xiàng)的和=$\frac{11({a}_{1}+{a}_{11})}{2}$=11a6=33.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.圓心為點(diǎn)(1,0),且過點(diǎn)(1,-1)的圓的方程為(x-1)2+y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.對(duì)任意實(shí)數(shù)m,圓x2+y2-2mx-4my+6m-2=0恒過定點(diǎn),則其坐標(biāo)為(1,1),或($\frac{1}{5}$,$\frac{7}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知$\frac{b-2a}{c}$=$\frac{{cos({A+C})}}{cosC}$.
(1)求角C的大。
(2)若c=2,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算 
(1)(lg2)2+lg2•lg50+lg25;
(2)(2$\frac{1}{4}}$)${\;}^{\frac{3}{2}}}$+0.1-2+(${\frac{1}{27}}$)${\;}^{-\frac{1}{3}}}$+2π0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知定義域?yàn)镽的函數(shù)f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函數(shù),
(1)求實(shí)數(shù)a的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)關(guān)于x的方程f(4x-b)+f(-2x+1)=0有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}.
(1)求A∩B,A∪B;
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“?n∈N,f(n)∈N且f(n)>n”的否定形式是( 。
A.?n∈N,f(n)∉N且f(n)≤nB.?n∈N,f(n)∉N且f(n)>n
C.?n0∈N,f(n0)∉N或f(n0)≤n0D.?n0∈N,f(n0)∉N且f(n0)>n0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某老師從星期一到星期五收到信件數(shù)分別是10,6,8,5,6,則該組數(shù)據(jù)的方差s2=( 。
A.$\frac{14}{5}$B.3C.$\frac{16}{5}$D.$\frac{18}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案