【題目】設(shè)函數(shù)f(x)=|3﹣2x|+|2x﹣a|
(1)當(dāng)a=1時(shí),求不等式f(x)≤3的解集;
(2)若存在x∈R使得不等式f(x)≤t++2對(duì)任意t>0恒成立,求實(shí)數(shù)a的取值范圍.
【答案】(1);(2)
【解析】
(1)解法一:利用分類討論法去掉絕對(duì)值,解對(duì)應(yīng)的不等式即可;
解法二:利用分段函數(shù)表示f(x),作出y=f(x)和直線y=3的圖象,利用圖象求出不等式的解集;
(2)由題意可得f(x)的最小值不大于t2的最小值,利用絕對(duì)值不等式求出f(x)的最小值,利用基本不等式求出t2的最小值,
再列不等式求得實(shí)數(shù)a的取值范圍.
(1)解法一:當(dāng)a=1時(shí),f(x)=|3﹣2x|+|2x﹣1|;
當(dāng)x時(shí),不等式f(x)≤3可化為:﹣2x+1﹣2x+3≤3,
解得x,此時(shí)x;
當(dāng)x時(shí),不等式f(x)≤3可化為為:2x﹣1﹣2x+3≤3,
此不等式恒成立,此時(shí)得x;
當(dāng)x時(shí),不等式f(x)≤3可化為:2x﹣1+2x﹣3≤3,
解得得x,此時(shí)x,
綜上知,x,即不等式的解集為[,];
解法二:利用分段函數(shù)表示f(x);
作出y=f(x)和直線y=3的圖象,如圖所示:
由f(x)=3解得:x或x,
由圖象可得不等式的解集為[,];
(2)由f(x)=|3﹣2x|+|2x﹣a|≥|3﹣2x+2x﹣a|=|3﹣a|=|a﹣3|,
即f(x)的最小值為|a﹣3|,
由t2≥22=6,當(dāng)且僅當(dāng)t,即t=2時(shí),取等號(hào),
因?yàn)榇嬖?/span>x∈R,使得不等式f(x)≤t2對(duì)任意t>0恒成立,
所以|a﹣3|≤6,解得﹣3≤a≤9;
所以實(shí)數(shù)a的取值范圍是﹣3≤a≤9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①過圓心和圓上的兩點(diǎn)有且只有一個(gè)平面
②若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點(diǎn)
③若直線上有無數(shù)個(gè)點(diǎn)不在平面內(nèi),則
④如果兩條平行線中的一條與一個(gè)平面平行,那么另一條也與這個(gè)平面平行
⑤垂直于同一個(gè)平面的兩條直線平行
其中正確的命題的個(gè)數(shù)是
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①一個(gè)命題的否命題為真,則它的逆命題一定為真;
②若pq為假命題,則p,q均為假命題;
③命題“若x2 -3x+2=0,則x=2”的否命題為“若x2 -3x+2=0,則x≠2”;
④“若a2+b2=0,則a, b全為0”的逆否命題是“若a, b全不為0,則a2+b2≠0”其中正確的命題序號(hào)是( )
A.①B.①③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,,是的動(dòng)點(diǎn),過點(diǎn)作的垂線,線段的中垂線交于點(diǎn),的軌跡為.
(1)求軌跡的方程;
(2)過且與坐標(biāo)軸不垂直的直線交曲線于兩點(diǎn),若以線段為直徑的圓與直線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了推廣一種新飲料,某飲料生產(chǎn)企業(yè)開展了有獎(jiǎng)促銷活動(dòng):將6罐這種飲料裝一箱,每箱中都放置2罐能夠中獎(jiǎng)的飲料.若從一箱中隨機(jī)抽出2罐,能中獎(jiǎng)的概率為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)心肺疾病入院的人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?
(2)在上述抽取的人中選人,求恰好有名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
如圖,四邊形ABCD為梯形,AB//CD,平面ABCD,
為BC的中點(diǎn).
(1)求證:平面平面PDE.
(2)在線段PC上是否存在一點(diǎn)F,使得PA//平面BDF?若存在,指出點(diǎn)F的位置,并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx+cos2x-.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)將函數(shù)f(x)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象.若關(guān)于x的方程g(x)-k=0,在區(qū)間[0,]上有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com