【題目】某企業(yè)生產(chǎn)了一種新產(chǎn)品,在推廣期邀請了100位客戶試用該產(chǎn)品,每人一臺(tái).試用一個(gè)月之后進(jìn)行回訪,由客戶先對產(chǎn)品性能作出“滿意”或“不滿意”的評價(jià),再讓客戶決定是否購買該試用產(chǎn)品(不購買則可以免費(fèi)退貨,購買則僅需付成本價(jià)).經(jīng)統(tǒng)計(jì),決定退貨的客戶人數(shù)是總?cè)藬?shù)的一半,“對性能滿意”的客戶比“對性能不滿意”的客戶多10人,“對性能不滿意”的客戶中恰有選擇了退貨.
(1)請完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“客戶購買產(chǎn)品與對產(chǎn)品性能滿意之間有關(guān)”.
對性能滿意 | 對性能不滿意 | 合計(jì) | |
購買產(chǎn)品 | |||
不購買產(chǎn)品 | |||
合計(jì) |
(2)企業(yè)為了改進(jìn)產(chǎn)品性能,現(xiàn)從“對性能不滿意”的客戶中按是否購買產(chǎn)品進(jìn)行分層抽樣,隨機(jī)抽取6位客戶進(jìn)行座談.座談后安排了抽獎(jiǎng)環(huán)節(jié),共有6張獎(jiǎng)券,其中一張印有900元字樣,兩張印有600元字樣,三張印有300元字樣,抽到獎(jiǎng)券可獲得相應(yīng)獎(jiǎng)金.6位客戶每人隨機(jī)抽取一張獎(jiǎng)券(不放回),設(shè)6位客戶中購買產(chǎn)品的客戶人均所得獎(jiǎng)金為元,求的分布列和數(shù)學(xué)期望.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)詳見解析(2)詳見解析
【解析】
(1)完成2×2列聯(lián)表,求出K2≈,從而有的把握認(rèn)為“客戶購買產(chǎn)品與對產(chǎn)品性能滿意之間有關(guān)”;
(2)由題意知:參加座談的購買產(chǎn)品的人數(shù)為2,退貨的人數(shù)為4.的取值為:300,450,600,750,求出相應(yīng)的概率值,由此能求出X的分布列和數(shù)學(xué)期望.
(1)設(shè)“對性能不滿意”的客戶中購買產(chǎn)品的人數(shù)為,則退貨的人數(shù)為,由此可列出下表
對性能滿意 | 對性能不滿意 | 合計(jì) | |
購買產(chǎn)品 | 50 | ||
不購買產(chǎn)品 | 50 | ||
合計(jì) | 100 |
因?yàn)?/span>,所以;
填寫列聯(lián)表如下:
對性能滿意 | 對性能不滿意 | 合計(jì) | |
購買產(chǎn)品 | 35 | 15 | 50 |
不購買產(chǎn)品 | 20 | 30 | 50 |
合計(jì) | 55 | 45 | 100 |
所以 .
所以,有的把握認(rèn)為“客戶購買產(chǎn)品與對產(chǎn)品性能滿意之間有關(guān)”.
(2)由題意知:參加座談的購買產(chǎn)品的人數(shù)為2,退貨的人數(shù)為4.
的取值為:300,450,600,750,
,
,
,
,
所以的分布列為
300 | 450 | 600 | 750 | |
.
所以,購買產(chǎn)品的客戶人均所得獎(jiǎng)金的數(shù)學(xué)期望為500元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過,.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)四邊形的四個(gè)頂點(diǎn)都在橢圓上,且對角線,過原點(diǎn),若,求證:四邊形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知焦點(diǎn)在x軸上,離心率為的橢圓E的左頂點(diǎn)為A,點(diǎn)A到右準(zhǔn)線的距離為6.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)A且斜率為的直線與橢圓E交于點(diǎn)B,過點(diǎn)B與右焦點(diǎn)F的直線交橢圓E于M點(diǎn),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會(huì),為了增強(qiáng)對青少年VR知識(shí)的普及,某中學(xué)舉行了一次普及VR知識(shí)講座,并從參加講座的男生中隨機(jī)抽取了50人,女生中隨機(jī)抽取了70人參加VR知識(shí)測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計(jì)兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | a | 35 | 50 |
女生 | 30 | d | 70 |
總計(jì) | 45 | 75 | 120 |
(1)確定a,d的值;
(2)試判斷能否有90%的把握認(rèn)為VR知識(shí)的測試成績優(yōu)秀與否與性別有關(guān);
(3)為了宣傳普及VR知識(shí),從該校測試成績獲得優(yōu)秀的同學(xué)中按性別采用分層抽樣的方法,隨機(jī)選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機(jī)抽取2名到校外宣傳,求“到校外宣傳的2名同學(xué)中至少有1名是男生”的概率.
附:
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】和的散點(diǎn)圖如圖所示,則下列說法中所有正確命題的序號(hào)為______.
①,是負(fù)相關(guān)關(guān)系;
②,之間不能建立線性回歸方程;
③在該相關(guān)關(guān)系中,若用擬合時(shí)的相關(guān)指數(shù)為,用擬合時(shí)的相關(guān)指數(shù)為,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量/萬噸 | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量與年份之間的線性回歸方程;
(2)利用(1)中所求出的線性回歸方程預(yù)測該地2018年的糧食需求量.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求的極值點(diǎn);
(2)若函數(shù)在區(qū)間內(nèi)無零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點(diǎn)且斜率存在的直線交橢圓于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),證明:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com