在長方體ABCD-A1B1C1D1中,則下列四個命題:
①P在直線BC1上運動時,三棱錐A-D1PC體積不變;
②P在直線BC1上運動時,直線AP與平面ACD1所成角不變;
③P在直線BC1上運動時,二面角P-AD1-C的大小不變;
④M在平面A1B1C1D1上到點D和C1的距離相等的點,則M點的軌跡是直線A1D1,
其中真命題的序號是   
【答案】分析:①易知BC1∥平面AD1C,所以BC1上任意一點到平面AD1C的距離相等,底不變,所以體積不變.
②通過舉例說明,如直線AB與平面ACD1所成角和直線AC1與平面ACD1所成角不相等.
③P在直線BC1上運動時,可知AP的軌跡是平面PAD1,即二面角P-AD1-C的大小不受影響.
④M在平面A1B1C1D1內(nèi),而點D和C1距不在平面A1B1C1D1內(nèi),且距離相等,則點M的軌跡是一條與直線DC1平行的直線.而DD1=D1C1,所以必過D1點.
解答:解:①∵BC1∥平面AD1,∴BC1∥上任意一點到平面AD1C的距離相等,所以體積不變,正確.
②P在直線BC1上運動時,直線AB與平面ACD1所成角和直線AC1與平面ACD1所成角不相等,所以不正確.
③當P在直線BC1上運動時,AP的軌跡是平面PAD1,即二面角P-AD1-C的大小不受影響,所以正確.
④∵M是平面A1B1C1D1上到點D和C1距離相等的點,∴M點的軌跡是一條與直線DC1平行的直線,而DD1=D1C1,所以正確.
故答案為:①③④
點評:本題考查的知識點是棱柱的結(jié)構(gòu)特征,棱錐的體積,直線與平面所成的角,二面角的平面角及求法,其中熟練掌握正方體的幾何特征是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點D'到平面B'AC的距離;
(2)二面角B-AC-B'的大小.(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知在長方體ABCD-A′B′C′D′中,點E為棱CC′上任意一點,AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點P為棱C′D′的中點,點E為棱CC′的中點,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習冊答案