18.經(jīng)過點P(-2,-1)、Q(3,a)的直線l與傾斜角是45°的直線平行,則a的值為4.

分析 首先根據(jù)斜率公式求出過點P(-2,-1),Q(3,a)的直線的斜率,再根據(jù)兩直線平行的條件列出方程,即可得出結(jié)果.

解答 解:過點P(-2,-1),Q(3,a)的直線的斜率為:$\frac{a+1}{3+2}$,
傾斜角為45°的直線的斜率為1
∵兩直線平行,
∴$\frac{a+1}{3+2}$=1,
解得:a=4
故答案為:4.

點評 此題考查了兩直線平行的條件,屬于基礎(chǔ)性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)等差數(shù)列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_8}-{{sin}^2}{a_4}}}{{sin({a_4}+{a_8})}}$=1,當n=8時,{an}的前n項和Sn取得最小值,則a1的取值范圍是[-π,-$\frac{7π}{8}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=3sinx+4cosx,若對任意x∈R均有f(x)≥f(α),則tanα的值等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知命題p:“方程x2-4x+a=0有實根”,且¬p為真命題的充分不必要條件為a>3m+1,則實數(shù)m的取值范圍是( 。
A.[1,+∞)B.(1,+∞)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若a>b,則下列不等式正確的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.a3>b3C.a2>b2D.a>|b|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求函數(shù)y=$\frac{sinx-1}{cosx+\sqrt{2}-1}$的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=k,則k為( 。
A.2RB.R
C.4RD.$\frac{1}{2}$R(R為△ABC外接圓半徑)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知點A,B的坐標為(-1,0),(1,0),直線AM,BM相交于點M,且直線AM的斜率與直線BM的斜率的差是-2.
(1)求點M的軌跡方程E;
(2)曲線E上有兩個不同的動點P,Q,且AP⊥PQ,求點Q的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,已知AB是⊙O的直徑,點D是⊙O上一點,過點D作⊙O的切線,交AB的延長線于點C,過點C作AC的垂線,交AD的延長線于點E.
(Ⅰ)求證:△CDE為等腰三角形;
(Ⅱ)若AD=2,$\frac{BC}{CE}$=$\frac{1}{2}$,求⊙O的面積.

查看答案和解析>>

同步練習冊答案