【題目】已知函數(shù)的部分圖像如圖所示,兩點(diǎn)之間的距離為10,且,若將函數(shù)的圖像向右平移個單位長度后所得函數(shù)圖像關(guān)于軸對稱,則的最小值為( )

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)圖象求出Aω ,即可求函數(shù)fx)的解析式;再通過平移變換函數(shù)圖象關(guān)于y軸對稱,求解t的關(guān)系式.

解:由題設(shè)圖象知,,

周期T,解得:T16,

ω

可得fx)=3sin),

f2)=0,

sin)=0,

故得fx)=3sin),

將函數(shù)fx)的圖象向右平移tt0)的單位,

可得:y3sin[]3sin),

由函數(shù)圖象關(guān)于y軸對稱,

整理得:﹣t6+8k,

t0,

∴當(dāng)k=﹣1時,t的最小值為2

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天津市某學(xué)校組織教師進(jìn)行學(xué)習(xí)強(qiáng)國知識競賽,規(guī)則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,p.若教師甲恰好答對3個問題的概率是,則________;在前述條件下,設(shè)隨機(jī)變量X表示教師甲答對題目的個數(shù),則X的數(shù)學(xué)期望為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球隊甲、乙兩名運(yùn)動員練習(xí)罰球,每人練習(xí)10組,每組罰球40個.命中個數(shù)的莖葉圖如圖,則下面結(jié)論中錯誤的一個是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高中三個年級共有4000人,為了了解各年級學(xué)周末在家的學(xué)習(xí)情況,現(xiàn)通過分層抽樣的方法獲得相關(guān)數(shù)據(jù)如下(單位:小時),其中高一學(xué)生周末的平均學(xué)習(xí)時間記為.

高一:14 15 15.5 16.5 17 17 18 19

高二:15 16 16 16 17 17 18.5

高三:16 17 18 21.5 24

(1)求每個年級的學(xué)生人數(shù);

(2)從高三被抽查的同學(xué)中隨機(jī)抽取2人,求2人學(xué)習(xí)時間均超過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】企業(yè)為了監(jiān)控某種零件的一條流水生產(chǎn)線的產(chǎn)品質(zhì)量,檢驗(yàn)員從該生產(chǎn)線上隨機(jī)抽取100個零件,測量其尺寸(單位:)并經(jīng)過統(tǒng)計分析,得到這100個零件的平均尺寸為10,標(biāo)準(zhǔn)差為0.5.企業(yè)規(guī)定:若,該零件為一等品,企業(yè)獲利20元;若,該零件為二等品,企業(yè)獲利10元;否則,該零件為不合格品,企業(yè)損失40.

1)在某一時刻內(nèi),依次下線10個零件,如果其中出現(xiàn)了不合格品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查若這10個零件的尺寸分別為9.6,10.5,9.810.1,10.7,9.410.9,9.5,10,10.9,則從這一天抽檢的結(jié)果看,是否需要對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?

2)將樣本的估計近似地看作總體的估計通過檢驗(yàn)發(fā)現(xiàn),該零件的尺寸服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差.

i)從下線的零件中隨機(jī)抽取20件,設(shè)其中為合格品的個數(shù)為,求的數(shù)學(xué)期望(結(jié)果保留整數(shù))

ii)試估計生產(chǎn)10000個零件所獲得的利潤.

附:若隨機(jī)變量服從正態(tài)分布,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) ,函數(shù) .

(Ⅰ)若有公共點(diǎn),且在點(diǎn)處切線相同,求該切線方程;

(Ⅱ)若函數(shù)有極值但無零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅲ)當(dāng), 時,求在區(qū)間的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)對任意的,均有,則稱函數(shù)具有性質(zhì)

1)判斷下面兩個函數(shù)是否具有性質(zhì),并說明理由.①;②

2)若函數(shù)具有性質(zhì),且,求證:對任意

3)在(2)的條件下,是否對任意均有.若成立給出證明,若不成立給出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】18屆國際籃聯(lián)籃球世界杯(世界男子籃球錦標(biāo)賽更名為籃球世界杯后的第二屆世界杯)于2019831日至915日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.中國隊12名球員在第一場和第二場得分的莖葉圖如圖所示,則下列說法錯誤的是(

A.第一場得分的中位數(shù)為B.第二場得分的平均數(shù)為

C.第一場得分的極差大于第二場得分的極差D.第一場與第二場得分的眾數(shù)相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象上有且僅有兩個不同的點(diǎn)關(guān)于直線的對稱點(diǎn)在的圖象上,則實(shí)數(shù)的取值范圍是________

查看答案和解析>>

同步練習(xí)冊答案