若直角坐標(biāo)平面內(nèi)不同的兩點(diǎn)滿足條件:①都在函數(shù)的圖像上;②關(guān)于原點(diǎn)對稱,則稱點(diǎn)對是函數(shù)的一對“友好點(diǎn)對”(注:點(diǎn)對看作同一對“友好點(diǎn)對”).若函數(shù),則此函數(shù)的“友好點(diǎn)對”有(     )對.

 A.                B.                  C.         D. 

 

【答案】

C

【解析】

試題分析:函數(shù) 關(guān)于坐標(biāo)原點(diǎn)對稱的函數(shù)為 與函數(shù) 的交點(diǎn)個(gè)數(shù)(如下圖)即為“友好點(diǎn)對”的個(gè)數(shù),從圖象上可知有兩個(gè)交點(diǎn).

考點(diǎn):求函數(shù)解析式,函數(shù)的奇偶性,二次函數(shù),對數(shù)函數(shù)的圖象.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)P到直線l1:x=-2的距離為d1,到點(diǎn)F(-1,0)的距離為d2,且
d2
d1
=
2
2

(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線l過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B(點(diǎn)A或B不在x軸上),分別過A、B點(diǎn)作直線l1:x=-2的垂線,對應(yīng)的垂足分別為M、N,試判斷點(diǎn)F與以線段MN為直徑的圓的位置關(guān)系(指在圓內(nèi)、圓上、圓外等情況);
(3)記S1=S△FAM,S2=S△FMN,S3=S△FBN(A、B、M、N是(2)中的點(diǎn)),問是否存在實(shí)數(shù)λ,使S22=λS1S3成立.若存在,求出λ的值;若不存在,請說明理由.
進(jìn)一步思考問題:若上述問題中直線l1:x=-
a2
c
、點(diǎn)F(-c,0)、曲線C:
x2
a2
+
y2
b2
=1(a>b>0,c=
a2-b2
)
,則使等式S22=λS1S3成立的λ的值仍保持不變.請給出你的判斷
 
 (填寫“不正確”或“正確”)(限于時(shí)間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標(biāo)平面內(nèi)的兩個(gè)不同的點(diǎn)M、N滿足條件①M(fèi)、N都在函數(shù)y=f(x)的圖象上;②M、N關(guān)于原點(diǎn)對稱.
則稱點(diǎn)對[M,N]為函數(shù)y=f(x)的一對“友好點(diǎn)對”(注:點(diǎn)對[M,N]與[N,M]為同一“友好點(diǎn)對”).
已知函數(shù)f(x)=
log3x   x>0
-x2-4x  x≤0
,此函數(shù)的“友好點(diǎn)對”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y∈R,i,j為直角坐標(biāo)平面內(nèi)x軸、y軸正方向上的單位向量,若向量a=xi+(y+
2
)j,b=xi+(y-
2
),且|a|+|b|=4

(I)求點(diǎn)M(x,y)的軌跡C的方程;
(II)若軌跡C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,作斜率為
2
的直線l與軌跡C交于不同兩點(diǎn)A、B,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標(biāo)平面內(nèi)不同的兩點(diǎn)P、Q滿足條件:①P、Q都在函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
y=f(x)的圖象上
②P,Q關(guān)于原點(diǎn)對稱,則稱點(diǎn)對[P,Q]是函數(shù)Y=f(x)的一對“友好點(diǎn)對”(注:點(diǎn)對[P,Q]與[Q,P]看作同一對“友好點(diǎn)對”).若函數(shù),則此函數(shù)的“友好點(diǎn)對”有( 。⿲Γ

查看答案和解析>>

同步練習(xí)冊答案