【題目】已知圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對(duì)稱. (I)求m的值;
(Ⅱ)直線l與圓C交于A,B兩點(diǎn), =﹣3(O為坐標(biāo)原點(diǎn)),求圓C的方程.

【答案】解:(I)x2+y2+2x+a=0(x+1)2+y2=1﹣a,圓心(﹣1,0).

∵圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對(duì)稱,∴直線過圓心,

∴﹣m+0+1=0m=1,

故m的值為1.

(II)設(shè)A(x1,y1),B(x2,y2

=x1x2+y1y2=2x1x2+x1+x2+1

2x2+4x+1+a=0,

根據(jù)韋達(dá)定理:x1+x2=﹣2;x1x2=

∴1+a﹣2+1=﹣3a=﹣3.

∴圓C的方程是:(x+1)2+y2=4.


【解析】(I)根據(jù)圓的對(duì)稱性判定直線過圓心,先求圓心坐標(biāo),再代入直線方程求解;(II)設(shè)A、B的坐標(biāo),根據(jù)向量坐標(biāo)運(yùn)算與韋達(dá)定理根與系數(shù)的關(guān)系求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.點(diǎn)M是棱PC的中點(diǎn)
(1)記平面ADM與平面PBC的交線是l,試判斷直線l與BC的位置關(guān)系,并加以證明.
(2)若 ,求證PB⊥平面ADM,并求直線PC與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對(duì)任意x∈(﹣ , )恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式ax2+bx﹣2<0的解集為{x|﹣2<x< },則ab等于(
A.﹣28
B.﹣26
C.28
D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個(gè)質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評(píng)價(jià)該產(chǎn)品的等級(jí).若S≤4,則該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號(hào)

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)
x,y,z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號(hào)

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)
x,y,z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率.
(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品, ①用產(chǎn)品編號(hào)列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高三1200名學(xué)生中隨機(jī)抽取40名,將他們一次數(shù)學(xué)模擬成績(jī)繪制成頻率分布直方圖(如圖)(滿分為150分,成績(jī)均為不低于80分整數(shù)),分為7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].
(1)求圖中的實(shí)數(shù)a的值,并估計(jì)該高三學(xué)生這次成績(jī)?cè)?20分以上的人數(shù);
(2)在隨機(jī)抽取的40名學(xué)生中,從成績(jī)?cè)赱90,100)與[140,150]兩個(gè)分?jǐn)?shù)段內(nèi)隨機(jī)抽取兩名學(xué)生,求這兩名學(xué)生的成績(jī)之差的絕對(duì)值標(biāo)不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點(diǎn).
(Ⅰ)求證:EF∥面ABC;
(Ⅱ)求證:平面ADE⊥平面ACD;
(Ⅲ)求四棱錐A﹣BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是城市慢行系統(tǒng)的一種模式創(chuàng)新,對(duì)于解決民眾出行“最后一公里”的問題特別見效,由于停取方便、租用價(jià)格低廉,各色共享單車受到人們的熱捧.某自行車廠為共享單車公司生產(chǎn)新樣式的單車,已知生產(chǎn)新樣式單車的固定成本為20000元,每生產(chǎn)一件新樣式單車需要增加投入100元.根據(jù)初步測(cè)算,自行車廠的總收益(單位:元)滿足分段函數(shù)h(x),其中 x是新樣式單車的月產(chǎn)量(單位:件),利潤(rùn)=總收益﹣總成本.
(1)試將自行車廠的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車廠的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案