10.設(shè){an}是一個公差不為零的等差數(shù)列,其前n項和為Sn,已知S9=45,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

分析 (1)由S9=9a5=45,即a5=5,根據(jù)等比中項的性質(zhì)可知${a}_{2}^{2}$=a1•a4,即(a5-3d)2=(a5-4d)(a5-d),代入即可求得d的值,求得數(shù)列{an}的通項公式;
(2)由(1)可知,${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,采用“裂項法”即可求得數(shù)列{bn}的前n項和Tn

解答 解:(1)由S9=45,即S9=9a5=45,即a5=5,
由a1,a2,a4 成等比數(shù)列.即${a}_{2}^{2}$=a1•a4,
由等差數(shù)列性質(zhì)可知:(a5-3d)2=(a5-4d)(a5-d),
∴(5-3d)2=(5-4d)(5-d),整理得:d2-d=0,
解得:d=1,
∴an=a5+(n-5)d=5+n-5=n,
∴數(shù)列{an}的通項公式an=n;
(2)由(1)可知,${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
數(shù)列{bn}的前n項和Tn,Tn=b1+b2+b3+…+bn,
=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$,
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$,
數(shù)列{bn}的前n項和Tn=$\frac{n}{n+1}$.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,ABCD是圓O的內(nèi)接正方形,E是劣弧CD上一點,EA交BD于F,EB交AC于G,且GF⊥AE.
(1)求證:AF•AE=AO•AC;
(2)求證:$\frac{{2A{O^2}}}{{A{F^2}}}-\frac{FG}{AF}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列$\sqrt{2},\sqrt{5},2\sqrt{2},\sqrt{11}$,…則$2\sqrt{17}$是它的第23項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.頂點在原點,對稱軸是坐標(biāo)軸,且經(jīng)過點(4,-2)的拋物線方程是( 。
A.y2=xB.x2=-8yC.y2=-x或x2=8yD.y2=x或x2=-8y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知長方體AC1中,棱AB=BC=1,棱BB1=2,連結(jié)B1C,過B點作B1C的垂線交CC1于E,交AC于F.
(1)求證:A1C⊥面EBD;
(2)求四棱錐A-A1B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x3+3ax2+(3-6a)x+12a-3 (a∈R)
(1)證明:曲線y=f(x)在x=0處的切線過點(2,3);
(2)若f(x)在x=x0 處取得極小值,x0∈(1,3)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.由曲線y=$\sqrt{x}$,直線x=1以及坐標(biāo)軸所圍成的平面圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx,h(x)=ax(a∈R).
(I)函數(shù)f(x)與h(x)的圖象無公共點,試求實數(shù)a的取值范圍;
(Ⅱ)是否存在實數(shù)m,使得對任意的x∈($\frac{1}{2}$,+∞),都有函數(shù)y=f(x)+$\frac{m}{x}$的圖象在g(x)=$\frac{{e}^{x}}{x}$的圖象的下方?若存在,請求出最大整數(shù)m的值;若不存在,請說理由.
(參考數(shù)據(jù):ln2=0.6931,ln3=1.0986,$\sqrt{e}$=1.6487,$\root{3}{e}$=1.3956).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.運行如圖所示的偽代碼,當(dāng)輸入a=4時,其結(jié)果為-2.

查看答案和解析>>

同步練習(xí)冊答案