(14分)(理)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為現(xiàn)有甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球時既終止,每個球在每一次被取出的機會是等可能的,用表示取球終止所需要的取球次數(shù).
(I)求袋中所有的白球的個數(shù);
(II)求隨機變量的概率分布;
(III)求甲取到白球的概率.
(理)(I)設(shè)袋中原有個白球,由題意知
可得(舍去)即袋中原有3個白球.
(II)由題意,的可能取值為1,2,3,4,5





所以的分布列為:

1
2
3
4
5






(III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

高考數(shù)學(xué)考試中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標準規(guī)定:“在每小題給出的四個選項中,只有一項是符合題目要求的,答對得5分,不答或答錯得0分”.某考生每道選擇題都選出了一個答案,能確定其中有6道題的答案是正確的,而其余題中,有兩道題都可判斷出有兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜.
試求出該考生的選擇題:
(I)得30分的概率;
(II)得多少分的概率最大;
(III)所得分數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.將編號為1,2,3的三個小球隨意放入編號為1,2,3的三個紙箱中,每個紙箱內(nèi)有且只有一個小球,稱此為一輪“放球”,設(shè)一輪“放球”后編號為i(i=1,2,3)的紙箱放入的小球編號為ai,定義吻合度誤差為=|1-a1|+|2-a2|+|3-a3|。假設(shè)a1,a2,a3等可能地為1、2、3的各種排列,求⑴某人一輪“放球”滿足=2時的概率。⑵的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2011年3月20日,第19個世界水日,主題是:“城市水資源管理”;2011年“六·五”世界環(huán)境日中國主題:“共建生態(tài)文明,共享綠色未來”.活動組織者為調(diào)查市民對活動主題的了解情況,隨機對10~60歲的人群抽查了人,調(diào)查的每個人都同時回答了兩個問題,統(tǒng)計結(jié)果如下:

(Ⅰ)若以表中的頻率近似看作各年齡段回答活動主題正確的概率,規(guī)定回答正確世界環(huán)境日中國主題的得20元獎勵,回答正確世界水日主題的得30元獎勵.組織者隨機請一個家庭中的兩名成員(大人42歲,孩子16歲)回答這兩個主題,兩個主題能否回答正確均無影響,分別寫出這個家庭兩個成員獲得獎勵的分布列并求該家庭獲得獎勵的期望;
(Ⅱ)求該家庭獲得獎勵為50元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲有一只放有a本《周易》,b本《萬年歷》,c本《吳從紀要》的書箱,且a+b+c ="6" (a,b,cN),乙也有一只放有3本《周易》,2本《萬年歷》,1《吳從紀要》的書箱,兩人各自從自己的箱子中任取一本書(由于每本書厚薄、大小相近,每本書被抽取出的可能性一樣),規(guī)定:當兩本書同名時甲將被派出去完成某項任務(wù),否則乙去.
(1) 用a、b、c表示甲去的概率;
(2) 若又規(guī)定:當甲取《周易》,《萬年歷》,《吳從紀要》而去的得分分別為1分、2分、3分,否則得0分,求甲得分的期望的最大值及此時a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
甲,乙,丙三個同學(xué)同時報名參加某重點高校2012年自主招生.高考前自主招生的程序為審核材料和文化測試,只有審核過關(guān)后才能參加文化測試,文化測試合格者即可獲得自主招生入選資格.因為甲,乙,丙三人各有優(yōu)勢,甲,乙,丙三人審核過關(guān)的概率分別為0.5,0.6,0.4,審核過關(guān)后,甲,乙,丙三人文化測試合格的概率分別為0.6,0.5,0.75.
(1)求甲,乙,丙三人中只有一人通過審核的概率;
(2)設(shè)甲,乙,丙三人中獲得自主招生入選資格的人數(shù)為,求隨機變量的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某射手射擊一次,擊中目標的概率是.(1)求連續(xù)射擊5次,恰有3次擊中目標的概率;
(2)求連續(xù)射擊5次,擊中目標的次數(shù)X的數(shù)學(xué)期望和方差.
(3)假設(shè)連續(xù)2次未擊中目標,則中止其射擊,求恰好射擊5次后,被中止射擊的概率.(本題結(jié)果用分數(shù)表示即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某公司在“2010年上海世博會知識宣傳”活動中進行抽獎活動,抽獎規(guī)則是:在一個盒子中裝有8張大小相同的精美卡片,其中2張印有“世博會歡迎您”字樣,2張印有“世博會會徽”圖案,4張印有“海寶”(世博會吉祥物)圖案,現(xiàn)從盒子里無放回的摸取卡片,找出印有“海寶”圖案的卡片表示中獎且停止摸卡。
(Ⅰ)求最多摸兩次中獎的概率;
(Ⅱ)用表示摸卡的次數(shù),求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從集合的所有非空子集中,等可能地取出一個;記所取出的非空子集
的元素個數(shù)為,則的數(shù)學(xué)期望E=           .

查看答案和解析>>

同步練習冊答案