10.“a=3”是“直線ax-2y-1=0與直線6x-4y+1=0平行”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 利用直線與直線的平行條件得出k1=k2,結(jié)合充分必要條件判斷即可.

解答 解:若“a=3”成立,則兩直線的方程分別是3x-2y-1=0與6x-4y+1=0,k1=k2=$\frac{3}{2}$.
所以兩直線一定平行;
反之,當“直線ax-2y-1=0與直線6x-4y+1=0平行”成立時,有$\frac{a}{6}$=$\frac{1}{2}$,所以a=3;
所以“a=3”是“直線ax-2y-1=0與直線6x-4y+1=0平行”的必要充分條件,
故選:A.

點評 本題簡單的考查了直線的平行的條件,充分必要條件的概念,難度不大,屬于容易題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.設Sn為等差數(shù)列{an}的前n項和,若a3=4,S9-S6=27,則S10=65.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在正方體ABCD-A1B1C1D1各條棱所在的直線中,與直線AA1垂直的條數(shù)共有8條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某校收集該校學生從家到學校的時間后,制作成如下的頻率分布直方圖:
(1)求a的值及該校學生從家到校的平均時間;
(2)若該校因?qū)W生寢室不足,只能容納全校60%的學生住校,出于安全角度考慮,從家到校時間較長的學生才住校,請問從家到校時間多少分鐘以上開始住校.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知命題甲:對任意實數(shù)x∈R,不等式$\frac{{a{x^2}-ax+3}}{{{x^2}-2x+2}}≥0$恒成立;命題乙:已知x,y∈R*滿足x+y=xy+3=0,且a≤xy恒成立.
(1)分別求出甲、乙為真命題時,實數(shù)a的取值范圍;
(2)求實數(shù)a的取值范圍,使命題甲、乙中有且只有一個真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,在三棱柱ABC-A1B1C1中,已知E,F(xiàn)分別是線段AB1與CA1上的動點,異面直線AB1與CA1所成角為θ,記線段EF中點M的軌邊為L,則|L|等于( 。
A.$\frac{1}{2}$|AB1|
B.$\sqrt{{\overrightarrow{A{B}_{1}}}^{2}+{\overrightarrow{C{A}_{1}}}^{2}-(\overrightarrow{A{B}_{1}}•\overrightarrow{C{A}_{1}})^{2}}$
C.$\frac{1}{4}$|AB1|•|CA1|•sinθ
D.$\frac{1}{12}$•V${\;}_{{\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}}$(V${\;}_{ABC-{A}_{1}{B}_{1}{C}_{1}}$是三棱柱ABC-A1B1C1的體積)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在數(shù)列{an}及{bn}中,an+1=an+bn+$\sqrt{{{a}_{n}}^{2}+{_{n}}^{2}}$,bn+1=an+bn-$\sqrt{{{a}_{n}}^{2}+{_{n}}^{2}}$,a1=1,b1=1.設cn=$\frac{1}{{a}_{n}}+\frac{1}{_{n}}$,則數(shù)列{cn}的前2017項和為4034.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.橢圓E的焦點在x軸上,中心在原點,其短軸上的兩個頂點和兩個焦點恰為邊長是2的正方形的頂點,則橢圓E的標準方程為( 。
A.$\frac{x^2}{2}+\frac{y^2}{{\sqrt{2}}}=1$B.$\frac{x^2}{2}+{y^2}=1$C.$\frac{x^2}{4}+\frac{y^2}{2}=1$D.$\frac{y^2}{4}+\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在直角坐標系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=acost\\ y=2sint\end{array}\right.$(t為參數(shù),a>0)以坐標原點O為極點,以x軸正半軸為極軸,建立極坐標系,已知直線l的極坐標方程為$ρcos({θ+\frac{π}{4}})=-2\sqrt{2}$.
(Ⅰ)設P是曲線C上的一個動點,當a=2時,求點P到直線l的距離的最小值;
(Ⅱ)若曲線C上的所有點均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

同步練習冊答案