【題目】已知.
(Ⅰ)當(dāng)時(shí),求的極值;
(Ⅱ)若有2個(gè)不同零點(diǎn),求的取值范圍;
(Ⅲ)對,求證: .
【答案】(1) ,無極大值(2) (3)見解析
【解析】試題分析:(Ⅰ)求導(dǎo),利用導(dǎo)函數(shù)的符號確定函數(shù)的單調(diào)性,進(jìn)而確定函數(shù)的極值;(Ⅱ)求導(dǎo),討論的取值,研究導(dǎo)函數(shù)的符號變換,得到函數(shù)單調(diào)性和極值,再通過零點(diǎn)的個(gè)數(shù)確定極值的符號;(Ⅲ)作差構(gòu)造函數(shù),求導(dǎo),利用導(dǎo)數(shù)求其最值即可證明.
試題解析:(Ⅰ)當(dāng)時(shí)
, , 為減函數(shù)
, , 為增函數(shù)
∴,無極大值;
(Ⅱ)
當(dāng)時(shí), ,只有個(gè)零點(diǎn)
當(dāng)時(shí),
, , 為減函數(shù)
, , 為增函數(shù)
而
∴當(dāng), ,使
當(dāng)時(shí),∴ ∴
∴
取,∴
∴函數(shù)有個(gè)零點(diǎn)
當(dāng)時(shí),
令得,
①,即時(shí)
當(dāng)變化時(shí) , 變化情況是
∴
∴函數(shù)至多有一個(gè)零點(diǎn),不符合題意
②時(shí), , 在單調(diào)遞增
∴至多有一個(gè)零點(diǎn),不合題意
③當(dāng)時(shí),即以時(shí)
當(dāng)變化時(shí), 的變化情況是
∴, 時(shí)
∴函數(shù)至多有個(gè)零點(diǎn)
綜上: 的取值范圍是
(Ⅲ)令
令行禁止
∴為增函數(shù)
取, ,
∴存在唯一使,即
, ,即,∴為減函數(shù)
, ,即,∴為增函數(shù)
∴
∴對有
即
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢如下圖所示,為抑制房價(jià)過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價(jià)得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價(jià);
(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): , , ;
回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測量體重,經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于至之間,將數(shù)據(jù)分成以下組,第一組,第二組,第三組,第四組,第五組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第、、組中隨機(jī)抽取名學(xué)生做初檢.
(Ⅰ)求每組抽取的學(xué)生人數(shù).
(Ⅱ)若從名學(xué)生中再次隨機(jī)抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為, .
(Ⅰ)求曲線的直角坐標(biāo)方程;
(Ⅱ)在曲線上求一點(diǎn),使它到直線: (為參數(shù))的距離最短,寫出點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的奇函數(shù)滿足,且在[0,1)上單調(diào)遞減,若方程在[0,1)上有實(shí)數(shù)根,則方程在區(qū)間[-1,7]上所有實(shí)根之和是
A. 12 B. 14 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺中, , 分別是, 的中點(diǎn), 平面, 是等邊三角形, , ,.
(1)證明: 平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程的不同實(shí)數(shù)根的個(gè)數(shù)為,則的所有可能值為( )
A. 3 B. 1或3 C. 3或5 D. 1或3或5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy 中,曲線C1的參數(shù)方程為:(),M是上的動點(diǎn),P點(diǎn)滿足,P點(diǎn)的軌跡為曲線.
(1)求的參數(shù)方程;
(2)在以O(shè)為極點(diǎn),x 軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com