【題目】如圖,在三棱臺中, , 分別是, 的中點, 平面, 是等邊三角形, , ,.

(1)證明: 平面

(2)求二面角的正弦值.

【答案】(1)見解析;(2) .

【解析】試題分析:(1)根據(jù)棱臺的性質和三角形的中位線可以得到,從而得到平面.在梯形中, 為棱的中點),所以平面,從而可以證明平面平面,也就能得到平面.(2)以所在直線分別為軸, 軸, 軸,建立空間直角坐標系,通過計算平面和平面的法向量的夾角得到二面角的正弦值為.

解析:(1)證明:因為, 為棱的中點,所以,所以四邊形為平行四邊形,從而.又平面,平面,所以平面. 因為的中位線,所以,同理可證, 平面.因為,所以平面平面. 平面,所以平面.

(2)以所在直線分別為軸, 軸, 軸,建立如圖所示的空間直角坐標系,設,則,則.

設平面的一個法向量,則

,得.

同理,設平面的一個法向量,又,

,得,得.所以,即二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調控措施,10月份開始房價得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強的線性相關關系,試建立關于的回歸方程(系數(shù)精確到0.01);政府若不調控,依此相關關系預測第12月份該市新建住宅銷售均價;

(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機抽取三個月的數(shù)據(jù)作樣本分析,若關注所抽三個月份的所屬季度,記不同季度的個數(shù)為,求的分布列和數(shù)學期望.

參考數(shù)據(jù): ,

回歸方程中斜率和截距的最小二乘法估計公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1若關于的方程上恒成立,求的值;

2)證明:當時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(Ⅰ)當時,求的極值;

(Ⅱ)若有2個不同零點,求的取值范圍;

(Ⅲ)對,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(14分)在四棱錐PABCD中,ABCACD=90°,BACCAD=60°PA平面ABCD,EPD的中點,PA=2AB=2.

)求四棱錐PABCD的體積V;

)若FPC的中點,求證PC平面AEF;

)求證CE平面PAB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中, , 分別是, 的中點, 平面, 是等邊三角形, , ,.

(1)證明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設的交點為,當變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標原點為極點, 軸正半軸為極軸建立極坐標系,設曲線的極坐標方程為, 為曲線上的動點,求點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中, , ,點上的動點.現(xiàn)將矩形沿著對角線折成二面角,使得

)求證:當時, ;

)試求的長,使得二面角的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

同步練習冊答案