若函數(shù)f(x)=(4-a)x與g(x)=logax的增減性相同,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,若為增,則有
4-a>1
a>1
,若為減,則
0<4-a<1
0<a<1
,分別解出它們,再求并集即可.
解答: 解:函數(shù)f(x)=(4-a)x與g(x)=logax的增減性相同,
則若為增,則有
4-a>1
a>1
,解得1<a<3;
若為減,則
0<4-a<1
0<a<1
,解得a∈∅.
綜上,1<a<3.
故答案為:(1,3).
點(diǎn)評:本題考查函數(shù)的單調(diào)性的判斷,考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,注意討論,屬于基礎(chǔ)題和易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某車間分批生產(chǎn)某種產(chǎn)品,每批的生產(chǎn)準(zhǔn)備費(fèi)用為40000元.若每批生產(chǎn)x件,則平均倉儲時(shí)間為
x
4
天,且每件產(chǎn)品每天的倉儲費(fèi)用為1元.為使平均每件產(chǎn)品的生產(chǎn)準(zhǔn)備費(fèi)用與倉儲費(fèi)用之和最小,每批應(yīng)生產(chǎn)產(chǎn)品的件數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某科研所計(jì)劃利用宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品甲、乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件)產(chǎn)品B(件)
研制成本、搭載費(fèi)用之和(萬元)2030計(jì)劃最大資金額300萬元
產(chǎn)品重量(千克)105最大搭載重量110千克
預(yù)計(jì)收益(萬元)12090
試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a<0,-1<b<0,那么( 。
A、a>ab>ab2
B、ab2>ab>a
C、ab>a>ab2
D、ab>ab2>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,e x0≤0
B、?x∈R,2x≠x2
C、a+b=0的充要條件是
a
b
=-1
D、a≠1,b≠1是ab≠1的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=lg(ax2+2ax+1)的值域是R,命題q:
ax2+3ax+2a+1
的定義域?yàn)镽,若p∧q為真命題,則實(shí)數(shù)a的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式x(2-x)>-3的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2+2x-1在[0,3]上最小值為( 。
A、0B、-4
C、-1D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊a,b,c成等差數(shù)列,且a2+b2+c2=63,則b的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案