10.設(shè)A,B,C,D是平面上互異的四個點,若($\overrightarrow{DB}$+$\overrightarrow{DC}$-2$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形C.銳角三角形D.鈍角三角形

分析 把已知的向量等式變形,可得($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,進(jìn)一步得到|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|得答案.

解答 解:由($\overrightarrow{DB}$+$\overrightarrow{DC}$-2$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
得($\overrightarrow{DB}$-$\overrightarrow{DA}$+$\overrightarrow{DC}$-$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
∴($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,
即$|\overrightarrow{AB}{|}^{2}-|\overrightarrow{AC}{|}^{2}=0$,
∴|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|,
∴△ABC是等腰三角形.
故選:B.

點評 本題考查平面向量的數(shù)量積運算,考查了數(shù)量積的運算法則,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若存在a∈R,使得|x+a|≤lnx+1在[1,m]上恒成立,則整數(shù)m的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2016年上半年,股票投資人袁先生同時投資了甲、乙兩只股票,其中甲股票賺錢的概率為$\frac{1}{3}$,賠錢的概率是$\frac{2}{3}$;乙股票賺錢的概率為$\frac{1}{4}$,賠錢的概率為$\frac{3}{4}$.對于甲股票,若賺錢則會賺取5萬元,若賠錢則損失4萬元;對于乙股票,若賺錢則會賺取6萬元,若賠錢則損失5萬元.
(Ⅰ)求袁先生2016年上半年同時投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋擲一枚硬幣,記$X=\left\{\begin{array}{l}1,{\;}^{\;}正面向上\\-1,反面向上\end{array}\right.$,則E(X)=(  )
A.0B.$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.當(dāng)|x|≤1時,不等式2px2+qx-p+1≥0恒成立,求p+q的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中是偶函數(shù)且值域為(0,+∞)的函數(shù)是( 。
A.y=|tanx|B.y=lg$\frac{x+1}{x-1}$C.y=x${\;}^{\frac{1}{3}}$D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{33}}{7}$,且(4,0)在橢圓C上,圓M:x2+y2=65.
(1)求橢圓C的方程;
(2)已知A(m,n)為圓M上的任意一點,過點A作橢圓C的兩條切線l1,l2,試探究直線l1,l2的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將兩對雙胞胎姐妹與另一對非雙胞胎姐妹共六位同學(xué)排成一行,則雙胞胎姐妹間各自不相鄰的概率為(  )
A.$\frac{1}{3}$B.$\frac{7}{15}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.醫(yī)院打算從5名外科醫(yī)生,4名內(nèi)科醫(yī)生,3名腦科醫(yī)生中,選出2名不同科的醫(yī)生到山區(qū)進(jìn)行義診,問有多少種不同的選派方式?

查看答案和解析>>

同步練習(xí)冊答案