2.已知橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{33}}{7}$,且(4,0)在橢圓C上,圓M:x2+y2=65.
(1)求橢圓C的方程;
(2)已知A(m,n)為圓M上的任意一點(diǎn),過點(diǎn)A作橢圓C的兩條切線l1,l2,試探究直線l1,l2的位置關(guān)系,并說明理由.

分析 (1)由題意列關(guān)于a,b,c的方程組,求解方程組得到a,b的值,則橢圓方程可求;
(2)當(dāng)過點(diǎn)A與橢圓C相切的一條切線的斜率不存在時(shí),切線方程為x=±4,得到直線y=±7恰好為過點(diǎn)A與橢圓相切的另一條切線,于是兩切線l1,l2互相垂直;當(dāng)過點(diǎn)A(m,n)與橢圓C相切的切線的斜率存在時(shí),設(shè)切線方程為y-n=k(x-m),聯(lián)立直線方程和橢圓方程,得到關(guān)于x的一元二次方程,利用判別式等于0能推導(dǎo)出直線l1、l2始終相互垂直.

解答 解:(1)由題意得$\left\{\begin{array}{l}{b=4}\\{\frac{c}{a}=\frac{\sqrt{33}}{7}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=7,b=4,
∴橢圓C的方程為$\frac{{y}^{2}}{49}+\frac{{x}^{2}}{16}=1$;
(2)如圖,
①當(dāng)過點(diǎn)A與橢圓C:$\frac{{y}^{2}}{49}+\frac{{x}^{2}}{16}=1$相切的一條切線的斜率不存在時(shí),
此時(shí)切線方程為x=±4,
∵點(diǎn)A在圓M:x2+y2=65上,則A(±4,±7),
∴直線y=±7恰好為過點(diǎn)A與橢圓相切的另一條切線,于是兩切線l1,l2互相垂直;
②當(dāng)過點(diǎn)A(m,n)與橢圓C相切的切線的斜率存在時(shí),
設(shè)切線方程為y-n=k(x-m),
由$\left\{\begin{array}{l}{y-n=k(x-m)}\\{\frac{{y}^{2}}{49}+\frac{{x}^{2}}{16}=1}\end{array}\right.$,
得(49+16k2)x2+32k(n-mk)x+16k2m2-32kmn+16n2-49×16=0,
由于直線與橢圓相切,
∴△=1024k2(n-mk)2-4(49+16k2)(16k2m2-32kmn+16n2-49×16)=0,
整理,得(16-m2)k2+2mnk+49-n2=0,
∴${k}_{1}{k}_{2}=\frac{49-{n}^{2}}{16-{m}^{2}}$,
∵P(m,n)在圓x2+y2=65上,∴m2+n2=65,
∴16-m2=n2-49,
∴k1k2=-1,則兩直線互相垂直.
綜上所述,直線l1、l2始終相互垂直.

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查兩直線的位置關(guān)系的判斷,訓(xùn)練了兩直線垂直與斜率的關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,注意函數(shù)與方程思想的合理運(yùn)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若a=1,b+c=$\sqrt{6}$,且cosA=$\frac{1}{4}$,則△ABC的面積為$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元錢可購(gòu)買一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng).顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、2元.若經(jīng)營(yíng)者將顧客摸出的球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營(yíng)者計(jì)劃將五種類別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(Ⅰ)請(qǐng)寫出一至四等將分別對(duì)應(yīng)的類別(寫出字母即可);
(Ⅱ)若經(jīng)營(yíng)者不打算在這個(gè)游戲的經(jīng)營(yíng)中虧本,求a的最大值;
(Ⅲ)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)A,B,C,D是平面上互異的四個(gè)點(diǎn),若($\overrightarrow{DB}$+$\overrightarrow{DC}$-2$\overrightarrow{DA}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,則△ABC的形狀是( 。
A.直角三角形B.等腰三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)p:?x∈R,x2-4x+3m>0,q:f(x)=x3+2x2+mx+1在(-∞,+∞)內(nèi)單調(diào)遞增,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,且△PF1F2面積的最大值為$\sqrt{3}$.
(Ⅰ)求橢圓C的方程
(Ⅱ)若直線l與橢圓C交于A,B兩點(diǎn).△OAB的面積為1,$\overrightarrow{OG}$=s$\overrightarrow{OA}$+t$\overrightarrow{OB}$(s,t∈R),當(dāng)點(diǎn)G在橢圓C上運(yùn)動(dòng)時(shí),試問s2+t2是否為定值,若是定值,求出這個(gè)定值,若不是定值,求出s2+t2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.過點(diǎn)P(1,-1)作圓x2+y2-2x-2y+1=0的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.2015年12月27日全國(guó)人大常委會(huì)表決通過了人口與計(jì)劃生育法修正案全面二孩定于20I6年1月1日起正式實(shí)施,為了解適齡民眾對(duì)放開生育二胎政策的態(tài)度,某機(jī)構(gòu)從某市選取70后和80后作為調(diào)查對(duì)象.隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:
 生二孩不生二孩合計(jì)
70后301545
80后451055
合計(jì)7525100
(1)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若以該市70后公民中隨機(jī)抽取3位,記其中生二孩的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
(2)根據(jù)調(diào)查數(shù)據(jù),是否在犯錯(cuò)誤的概率不超過0.1的前提下(有90%以上自把握)認(rèn)為“生二孩與年齡有關(guān)”?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知sin($\frac{π}{5}$-α)=$\frac{1}{3}$,則cos(2α+$\frac{3π}{5}$)=-$\frac{7}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案