【題目】直線l1 , l2分別過(guò)點(diǎn)A(3 ,2),B( ,6),它們分別繞點(diǎn)A,B旋轉(zhuǎn),但始終保持l1⊥l2 . 若l1與l2的交點(diǎn)為P,坐標(biāo)原點(diǎn)為O,則線段OP長(zhǎng)度的取值范圍是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

【答案】A
【解析】解:l1⊥l2.若l1與l2的交點(diǎn)為P,

可得P在以AB為直徑的圓上運(yùn)動(dòng),

由點(diǎn)A(3 ,2),B( ,6)可得

圓心C(2 ,4),半徑r= =3,

則|OP|的最小值為|OC|﹣r= ﹣3=3,

|OP|的最大值為|OC|+r= +3=9.

即有線段OP長(zhǎng)度的取值范圍是[3,9].

所以答案是:A.

【考點(diǎn)精析】關(guān)于本題考查的圓的標(biāo)準(zhǔn)方程,需要了解圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.

根據(jù)以上頻率分布直方圖,回答下列問(wèn)題:

(1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)

(2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0),上的點(diǎn)M(1,m)到其焦點(diǎn)F的距離為2,
(Ⅰ)求C的方程;并求其準(zhǔn)線方程;
(II)已知A (1,﹣2),是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線L,使得直線L與拋物線C有公共點(diǎn),且直線OA與L的距離等于 ?若存在,求直線L的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖拋物線頂點(diǎn)在原點(diǎn),圓(x﹣2)2+y2=22的圓心恰是拋物線的焦點(diǎn),

(Ⅰ)求拋物線的方程;
(Ⅱ)一直線的斜率等于2,且過(guò)拋物線焦點(diǎn),它依次截拋物線和圓于A、B、C、D四點(diǎn),求|AB|+|CD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:y=kx+1(k≠0)與橢圓3x2+y2=a相交于A、B兩個(gè)不同的點(diǎn),記l與y軸的交點(diǎn)為C.
(Ⅰ)若k=1,且|AB|= ,求實(shí)數(shù)a的值;
(Ⅱ)若 =2 ,求△AOB面積的最大值,及此時(shí)橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某企業(yè)近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線圖所示:

1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)最高?

2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);

3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第38月份的利潤(rùn).

月份x

1

2

3

4

利潤(rùn)y(單位:百萬(wàn)元)

4

4

6

6

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】供電部門(mén)對(duì)某社區(qū)位居民2017年12月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為, , 五組,整理得到如下的頻率分布直方圖,則下列說(shuō)法錯(cuò)誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費(fèi),選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C: (m>0)的離心率為 ,A,B分別為橢圓的左、右頂點(diǎn),F(xiàn)是其右焦點(diǎn),P是橢圓C上異于A、B的動(dòng)點(diǎn).

(1)求m的值及橢圓的準(zhǔn)線方程;
(2)設(shè)過(guò)點(diǎn)B且與x軸的垂直的直線交AP于點(diǎn)D,當(dāng)直線AP繞點(diǎn)A轉(zhuǎn)動(dòng)時(shí),試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:4x﹣3y+11=0和直線l2:x=﹣1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是(
A.
B.2
C.
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案