【題目】已知橢圓的離心率為,且四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是.
(1)求橢圓的方程;
(2)已知直線經(jīng)過點(diǎn),且不垂直于軸,直線與橢圓交于,兩點(diǎn),為的中點(diǎn),直線與橢圓交于,兩點(diǎn)(是坐標(biāo)原點(diǎn)),若四邊形的面積為,求直線的方程.
【答案】(1);(2).
【解析】
(1)離心率提供與的關(guān)系,四個(gè)頂點(diǎn)構(gòu)成的四邊形對(duì)角線互相垂直,列出等量關(guān)系求,的值;
(2)直線經(jīng)過點(diǎn),由直線點(diǎn)斜式方程設(shè)出直線的方程,并設(shè)出直線與橢圓交點(diǎn)、的坐標(biāo),聯(lián)立方程,由韋達(dá)定理可表示出的中點(diǎn)的坐標(biāo);由中點(diǎn)的坐標(biāo)可得直線的方程,聯(lián)立直線的方程與橢圓的方程,利用韋達(dá)定理可求,再利用點(diǎn)到直線距離公式可求點(diǎn)、到直線的距離,由四邊形的面積為可列出等量關(guān)系,最后可求出直線的方程.
解:(1)由題意可得,
解得,,
故橢圓的方程為.
(2)設(shè)直線的方程為,,.
聯(lián)立,整理得,
則,,
從而,故,
直線的斜率為,所以直線的方程為,
即.
聯(lián)立,整理得,
則.
設(shè)點(diǎn)到直線的距離為,則點(diǎn)到直線的距離也為,
從而.
∵點(diǎn),在直線的兩側(cè),
∴,
∴,則,
∵,
∴,
則四邊形的面積,
∵四邊形的面積為,
∴,解得,
故直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在港口O的正東100海里處,在北偏東方向有條直線航道OD,航道和正東方向之間有一片以B為圓心,半徑為海里的圓形暗礁群(在這片海域行船有觸礁危險(xiǎn)),其中OB=海里,tan∠AOB=,cos∠AOD=,現(xiàn)一艘科考船以海里/小時(shí)的速度從O出發(fā)沿OD方向行駛,經(jīng)過2個(gè)小時(shí)后,一艘快艇以50海里/小時(shí)的速度準(zhǔn)備從港口A出發(fā),并沿直線方向行駛與科考船恰好相遇.
(1)若快艇立即出發(fā),判斷快艇是否有觸礁的危險(xiǎn),并說明理由;
(2)在無觸礁危險(xiǎn)的情況下,若快艇再等x小時(shí)出發(fā),求x的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,我國突發(fā)新冠肺炎疫情,疫情期間中小學(xué)生“停課不停學(xué)”.已知某地區(qū)中小學(xué)生人數(shù)情況如甲圖所示,各學(xué)段學(xué)生在疫情期間“家務(wù)勞動(dòng)”的參與率如乙圖所示.為了進(jìn)一步了解該地區(qū)中小學(xué)生參與“家務(wù)勞動(dòng)”的情況,現(xiàn)用分層抽樣的方法抽取4%小學(xué)初中高中學(xué)段的學(xué)生進(jìn)行調(diào)查,則抽取的樣本容量、抽取的高中生家中參與“家務(wù)勞動(dòng)”的人數(shù)分別為( )
A.2750,200B.2750,110C.1120,110D.1120,200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線與曲線的公共點(diǎn)的極坐標(biāo);
(2)若點(diǎn)的極坐標(biāo)為,設(shè)曲線與軸相交于點(diǎn),則在曲線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的直角坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為助力湖北新冠疫情后的經(jīng)濟(jì)復(fù)蘇,某電商平臺(tái)為某工廠的產(chǎn)品開設(shè)直播帶貨專場.為了對(duì)該產(chǎn)品進(jìn)行合理定價(jià),用不同的單價(jià)在平臺(tái)試銷,得到如下數(shù)據(jù):
單價(jià)(元/件) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量(萬件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)根據(jù)以上數(shù)據(jù),求關(guān)于的線性回歸方程;
(2)若該產(chǎn)品成本是4元/件,假設(shè)該產(chǎn)品全部賣出,預(yù)測(cè)把單價(jià)定為多少時(shí),工廠獲得最大利潤?
(參考公式:回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且以橢圓上的點(diǎn)和長軸兩端點(diǎn)為頂點(diǎn)的三角形的面積的最大值為.
(1)求橢圓的方程;
(2)經(jīng)過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試證明:直線與軸的交點(diǎn)為一個(gè)定點(diǎn),且(為原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》是中國古代重要的數(shù)學(xué)著作,其記載的“日月歷法”曰:“陰陽之?dāng)?shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,….生數(shù)皆終,萬物復(fù)蘇,天以更元作紀(jì)歷”,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長者已是奔百之齡(年齡介于90至100),其余19人的年齡依次相差一歲,則年長者的年齡為( )
A.94B.95C.96D.98
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研團(tuán)隊(duì)對(duì)例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.
(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表;
(2)根據(jù)(1)中列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為新冠肺炎重癥與吸煙有關(guān)?
(3)已知每例重癥患者平均治療費(fèi)用約為萬元,每例輕癥患者平均治療費(fèi)用約為萬元.根據(jù)(1)中列聯(lián)表數(shù)據(jù),分別求吸煙患者和非吸煙患者的平均治療費(fèi)用.(結(jié)果保留兩位小數(shù))
附:
≥ | |||
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中,,且,是等腰直角三角形,其中為斜邊,若把沿邊折疊到的位置,使平面平面.
(1)證明:.
(2)若為棱的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com