A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{4}$ |
分析 由$\overrightarrow{p}$∥$\overrightarrow{q}$,利用向量共線定理可得(c-a)•sinA-(c-b)(sinB+sinC)=0,由正弦定理可得:(c-a)a-(c-b)(b+c)=0,化簡(jiǎn)再利用余弦定理即可得出.
解答 解:∵$\overrightarrow{p}$∥$\overrightarrow{q}$,∴(c-a)•sinA-(c-b)(sinB+sinC)=0,
由正弦定理可得:(c-a)a-(c-b)(b+c)=0,
化為:a2+c2-b2=ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
又B∈(0,π),
∴$B=\frac{π}{3}$.
故選:C.
點(diǎn)評(píng) 本題考查了向量共線定理、正弦定理、余弦定理、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>b>a | C. | a>c>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P(Χ2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com