10.若復(fù)數(shù)z滿足|z-1-2i|=2,則|z-3|的最小值為2$\sqrt{2}$-2.

分析 由題意知復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)到(1,2)點(diǎn)的距離為2,然后求解與到(3,0)的距離的最小值.

解答 解:∵復(fù)數(shù)z滿足|z-1-2i|=2,
∴復(fù)數(shù)z到(1,2)點(diǎn)的距離為2,
∴|z-3|的幾何意義是復(fù)數(shù)對(duì)應(yīng)點(diǎn),與(3,0)距離,
所求的最小值為:$\sqrt{(3-1)^{2}+(0-2)^{2}}$-2=2$\sqrt{2}$-2,
故答案為:2$\sqrt{2}$-2.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式及其幾何意義,考查轉(zhuǎn)化計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,設(shè)$\overrightarrow{p}$=(c-b,c-a),$\overrightarrow{q}$=(sinA,sinB+sinC),且$\overrightarrow{p}$∥$\overrightarrow{q}$,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.分別求出下列兩個(gè)程序的運(yùn)行結(jié)果:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在區(qū)間($\frac{1}{3},+∞}$)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是[-$\frac{2}{9}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)計(jì)算4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷[-6(x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)];
(2)$\frac{\sqrt{m}•\root{3}{m}•\root{4}{m}}{(\root{6}{m})^{5}•{m}^{\frac{1}{4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x2-2x+3,求下列情況下二次函數(shù)的最值
(1)2≤x≤3;
(2)x∈[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)=(x+1)(x2+ax)為奇函數(shù),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下面是關(guān)于復(fù)數(shù)z=$\frac{i}{-1+i}$的四個(gè)命題,其中的真命題為( 。
p1:|z|=$\frac{i}{-1+i}$,p2:z2=2i,p3:z的共軛復(fù)數(shù)為$\frac{1+i}{2}$,p4:z的虛數(shù)為-1.
A.p1,p3B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)y=3sin(-x+$\frac{π}{6}$)的相位和初相分別是( 。
A.-x+$\frac{π}{6}$,$\frac{π}{6}$B.x+$\frac{5π}{6}$,$\frac{5π}{6}$C.x-$\frac{π}{6}$,-$\frac{π}{6}$D.x+$\frac{5π}{6}$,$\frac{π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案