【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=,Sn=b1+b2+…+bn,對(duì)任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1)將已知條件轉(zhuǎn)化為等比數(shù)列的基本量來表示,通過解方程組得到其值,從而確定通項(xiàng)公式;(2)將數(shù)列{an}的通項(xiàng)公式代入可求得,根據(jù)特點(diǎn)采用錯(cuò)位相減法求得前n項(xiàng)和,代入不等式Sn+(n+m)an+1<0,通過分離參數(shù)的方法求得m的取值范圍
試題解析:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為,依題意,有,代入
可得,解得或,又?jǐn)?shù)列單調(diào)遞增,數(shù)列的通項(xiàng)公式為
(2)∵bn=2n·=-n·2n,
∴-Sn=1×2+2×22+3×23+…+n×2n,①
-2Sn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1.②
①-②,得Sn=2+22+23+…+2n-n·2n+1=-n·2n+1=2n+1-n·2n+1-2.
∵Sn+(n+m)an+1<0,∴2n+1-n·2n+1-2+n·2n+1+m·2n+1<0對(duì)任意正整數(shù)n恒成立.
∴m·2n+1<2-2n+1對(duì)任意正整數(shù)n恒成立,即m<-1恒成立.
∵-1>-1,∴m≤-1,即m的取值范圍是(-∞,-1].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△內(nèi)接于圓,是圓的直徑,四邊形為平行四邊形,平面,.
(1)求證:⊥平面;
(2)設(shè),表示三棱錐的體積,求函數(shù)的解析式及最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(1)請(qǐng)按字母F、G、H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說明理由);
(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論;
(3)證明:直線DF⊥平面BEG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1-200編號(hào),并按編號(hào)順序平均分為40組(1-5號(hào),6-10號(hào)…,196-200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 人.
圖 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1g(1﹣x)的值域?yàn)椋ī仭蓿?),則函數(shù)f(x)的定義域?yàn)椋?/span> )
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參加植樹活動(dòng),林業(yè)部門在植樹前,為了保證樹苗的質(zhì)量,將在植樹前對(duì)樹苗進(jìn)行檢測(cè),現(xiàn)從同一種樹的甲、乙兩批樹苗中各抽測(cè)了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46.
(1)你能用適當(dāng)?shù)慕y(tǒng)計(jì)圖表示上面的數(shù)據(jù)嗎?
(2)根據(jù)你所畫的統(tǒng)計(jì)圖,對(duì)甲,乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請(qǐng)說明理由.
(3)若數(shù)列{bn},對(duì)于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面是邊長(zhǎng)為的菱形, ,四邊形是矩形,平面平面, , 是的中點(diǎn).
(1)求證: 平面;
(2)求直線與平面所成角的正弦值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為45°,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com