8.若正實數(shù)x,y滿足x+$\frac{1}{x}+y+\frac{1}{y}$=5,則xy的取值范圍為[$\frac{1}{4}$,4].

分析 利用基本不等式的性質(zhì)以及二次函數(shù)的性質(zhì)即可得出.

解答 解:∵正實數(shù)x,y滿足x+$\frac{1}{x}+y+\frac{1}{y}$=5,
∴5=x+y+$\frac{x+y}{xy}$≥2$\sqrt{xy}$+$\frac{2\sqrt{xy}}{xy}$,
∴2${(\sqrt{xy})}^{2}$-5$\sqrt{xy}$+2≤0,
解得:$\frac{1}{2}$≤$\sqrt{xy}$≤2,
故xy的范圍是:$[{\frac{1}{4},4}]$,
故答案為:[$\frac{1}{4}$,4].

點評 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正實數(shù)a,b滿足:a+b=1,則$\frac{2a}{{{a^2}+b}}+\frac{{a+{b^2}}}$的最大值是$\frac{{2\sqrt{3}+3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若等差數(shù)列{an}的公差為d,前n項的和為Sn,則數(shù)列{$\frac{{S}_{n}}{n}$}為等差數(shù)列,公差為$\frac1166166{2}$.類似,若各項均為正數(shù)的等比數(shù)列{bn}的公比為q,前n項的積為Tn,則等比數(shù)列{$\root{n}{{T}_{n}}$}的公比為( 。
A.$\frac{q}{2}$B.q2C.$\sqrt{q}$D.$\root{n}{q}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.15B.105C.245D.945

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知一個圓錐內(nèi)接于球O(圓錐的底面圓周及頂點均在球面上),若球的半徑R=5,圓錐的高是底面半徑的2倍,則圓錐的體積為$\frac{128π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b,x,y∈(0,+∞),且ab=4,x+y=1.
求證:(ax+by)(bx+ay)≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)若C202x=C2016-x,求實數(shù)x的值;
(2)已知(1+ax)3+(1-x)5的展開式中x3的系數(shù)為-2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2-2t}\\{y=3-t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2坐標方程為ρ=2cosθ.
(1)把C1的參數(shù)方程化為普通方程,C2的極坐標方程化為直角坐標;
(2)若點M在曲線C1上,點N在曲線C2上,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在某項測量中,測量結(jié)果X服從正態(tài)分布N(2,σ2)(σ>0),若X在(0,2)內(nèi)取值的概率為0.4,則X在(-∞,4)內(nèi)取值的概率為( 。
A.0.1B.0.2C.0.8D.0.9

查看答案和解析>>

同步練習(xí)冊答案