20.(x-$\frac{1}{x}$)6展開式中x2的系數(shù)為( 。
A.-15B.15C.-20D.20

分析 利用二項式展開式的通項公式,令x的指數(shù)為2求出展開式中x2的系數(shù).

解答 解:(x-$\frac{1}{x}$)6展開式的通項公式為
Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{1}{x})}^{r}$=${C}_{6}^{r}$•(-1)r•x6-2r
令6-2r=2,解得r=2;
∴(x-$\frac{1}{x}$)6展開式中x2的系數(shù)為
${C}_{6}^{2}$•(-1)2=15.
故選:B.

點評 本題考查了二項式展開式的通項公式應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某班級有一個7人的小組,現(xiàn)選出其中3人調(diào)整座位且3人座位都有變動,其余4人座位不變,則不同的調(diào)整方案有(  )
A.35種B.70種C.210種D.105種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),若Sn為數(shù)列前n項和,則S2016=(  )
A.22016-1B.3•21008-3C.22009-3D.22010-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.《九章算術(shù)》是我國古代的數(shù)學(xué)名著,體現(xiàn)了古代勞動人民的數(shù)學(xué)智慧,其中第六章“均輸”中,有一竹節(jié)容量問題,某人根據(jù)這一思想,設(shè)計了如圖所示的程序框圖,若輸出m的值為35,則輸入的a的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE,設(shè)PA=1,AD=2.
(1)求平面BPC的法向量;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ax-xlna(a>0且a≠1)的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\sqrt{{e}^{x}+ax-2}$,其中a>0,若存在實數(shù)x0∈[1,2],使f[f(x0)]=x0,則a的取值范圍是(0,3-e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}前n項和為Sn,且滿足a1=1,4Sn=anan+1+1.
(1)計算a2、a3、a4的值,并猜想{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$與橢圓${C_2}:\frac{x^2}{4}+{y^2}=1$有相同的離心率,且經(jīng)過點P(2,-1).
( I)求橢圓C1的標(biāo)準(zhǔn)方程;
( II)設(shè)點Q為橢圓C2的下頂點,過點P作兩條直線分別交橢圓C1于A、B兩點,若直線PQ平分∠APB,求證:直線AB的斜率為定值,并且求出這個定值.

查看答案和解析>>

同步練習(xí)冊答案