11.設(shè)數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),若Sn為數(shù)列前n項和,則S2016=(  )
A.22016-1B.3•21008-3C.22009-3D.22010-3

分析 數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),可得$\frac{{a}_{n+2}{a}_{n+1}}{{a}_{n+1}{a}_{n}}$=$\frac{{2}^{n+1}}{{2}^{n}}$=2,a2a1=2,解得a2=2.可得數(shù)列{an}的奇數(shù)項與偶數(shù)項分別成等比數(shù)列,公比都為2,首項分別為1,2.即可得出.

解答 解:∵數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),
∴$\frac{{a}_{n+2}{a}_{n+1}}{{a}_{n+1}{a}_{n}}$=$\frac{{2}^{n+1}}{{2}^{n}}$=2,a2a1=2,解得a2=2.
∴數(shù)列{an}的奇數(shù)項與偶數(shù)項分別成等比數(shù)列,公比都為2,首項分別為1,2.
則S2016=(a1+a3+…+a2015)+(a2+a4+…+a2016
=$\frac{{2}^{1008}-1}{2-1}$+$\frac{2({2}^{1008}-1)}{2-1}$
=3•21008-3.
故選:B.

點評 本題考查了等比數(shù)列的通項公式與求和公式、分組求和方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=sin($\frac{k}{2}$x+$\frac{π}{3}$)(k>0)的最小正周期不大于2,則正整數(shù)k的最小值為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,圓O內(nèi)有一個內(nèi)接三角形ABC,且直徑AB=2,∠ABC=45°,在圓O內(nèi)隨機撒一粒黃豆,則它落在三角形ABC內(nèi)(陰影部分)的概率是(  )
A.$\frac{1}{2π}$B.$\frac{\sqrt{2}}{2π}$C.$\frac{\sqrt{3}}{2π}$D.$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知命題p:方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{m-5}$=1表示雙曲線,命題q:x∈(0,+∞),x2-mx+4≥0恒成立,若p∨q是真命題,且?(p∧q)也是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在數(shù)列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),則$\frac{{a}_{3}}{{a}_{4}}$=( 。
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知復(fù)數(shù) z=$\frac{5}{1+2i}$(i是虛數(shù)單位),則復(fù)數(shù)z的模為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知正項數(shù)列{an}滿足an+1-a1=(a2-1)Sn(n∈N*),其中Sn 為數(shù)列{an}的前n項和,a2=t
(1)求數(shù)列{an}的通項公式;
(2)求證:${S_n}≤\frac{{n({a_1}+{a_n})}}{2}$,并指出等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.(x-$\frac{1}{x}$)6展開式中x2的系數(shù)為(  )
A.-15B.15C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{2π}{3}$對稱,它的周期是π,則以下命題錯誤的是( 。
A.f(x)的圖象過點$(0,\frac{1}{2})$B.f(x)在$[{\frac{5π}{12},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個對稱中心是點$({\frac{5π}{12},0})$D.f(x)的最大值為A

查看答案和解析>>

同步練習(xí)冊答案