【題目】設(shè)是等差數(shù)列,,且,,成等比數(shù)列.
(1)求的通項公式;
(2)求的前項和的最小值;
(3)若是等差數(shù)列,與的公差不相等,且,問:和中除第5項外,還有序號相同且數(shù)值相等的項嗎?(直接寫出結(jié)論即可)
【答案】(1);(2),或時,取得最小值;(3)和中除第5項外,沒有序號相同且數(shù)值相等的項.
【解析】
(1)根據(jù)等差數(shù)列的基本量和等比中項的性質(zhì),得到關(guān)于公差的方程,從而得到通項公式;
(2)根據(jù)(1)所得的通項,從而得到前項的和;
(3)設(shè)的通項,根據(jù)列出方程組,得到方程組無解,得到答案.
(1)設(shè)等差數(shù)列的公差為,.
因為,,成等比數(shù)列,
所以,
即有,
解得,
則.
(2)由(1)中等差數(shù)列的通項,
所以的前項和,
由于為自然數(shù),可得或時,取得最小值.
(3)設(shè)和中除第5項外,還有序號相同且數(shù)值相等的項,
設(shè)為第項,和相同,則,
設(shè)
根據(jù)與的公差不相等,可知
由,得,即,
由和相同,得到
則,
即
整理得,
因為且,所以方程無解.
故和中除第5項外,沒有序號相同且數(shù)值相等的項.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個小區(qū)間,在每一個小區(qū)間上作一個小矩形,使矩形的右端點(diǎn)落在函數(shù)的圖像上.若用表示第k個矩形的面積,表示這n個叫矩形的面積總和.
(1)求的表達(dá)式;
(2)利用數(shù)學(xué)歸納法證明,并求出的表達(dá)式
(3)求的值,并說明的幾何意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在,使得成立,求實數(shù)的取值范圍;
(3)定義:如果實數(shù)滿足, 那么稱比更接近.對于(2)中的及,問:和哪個更接近?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn),若函數(shù)滿足:,都有,就稱這個函數(shù)是點(diǎn)的“限定函數(shù)”.以下函數(shù):①,②,③,④,其中是原點(diǎn)的“限定函數(shù)”的序號是______.已知點(diǎn)在函數(shù)的圖象上,若函數(shù)是點(diǎn)的“限定函數(shù)”,則的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)分別為,長軸長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程及離心率;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿足,求證:由點(diǎn) 構(gòu)成的曲線關(guān)于直線對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場營銷人員進(jìn)行某商品的市場營銷調(diào)查時發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點(diǎn)統(tǒng)計得到以下表:
反饋點(diǎn)數(shù)t | 1 | 2 | 3 | 4 | 5 |
銷量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N量(千件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.試預(yù)測若返回6個點(diǎn)時該商品每天的銷量;
(Ⅱ)若節(jié)日期間營銷部對商品進(jìn)行新一輪調(diào)整.已知某地擬購買該商品的消費(fèi)群體十分龐大,經(jīng)營銷調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將對返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在和的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,求抽出的3人中至少有1名“欲望膨脹型”消費(fèi)者的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程的曲線是圓C,
(1)若直線l:與圓C相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求實數(shù)m的值;
(2)當(dāng)時,設(shè)T為直線n:上的動點(diǎn),過T作圓C的兩條切線TG、TH,切點(diǎn)分別為G、H,求四邊形TGCH而積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),若點(diǎn)P(x0,4)在拋物線C上,且.
(1)求拋物線C的方程;
(2)動直線l:x=my+1(mR)與拋物線C相交于A,B兩點(diǎn),問:在x軸上是否存在定點(diǎn)D(t,0)(其中t≠0),使得kAD+kBD=0,(kAD,kBD分別為直線AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,側(cè)棱底面,為棱上一點(diǎn),
(1)當(dāng)為棱中點(diǎn)時,求直線與平面所成角的正弦值;
(2)是否存在點(diǎn),使二面角的余弦值為?若存在,求的值.若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com