【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為

)求橢圓的標(biāo)準(zhǔn)方程及離心率;

)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),若點(diǎn)滿(mǎn)足,求證:由點(diǎn) 構(gòu)成的曲線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng).

【答案】,離心率;()見(jiàn)解析

【解析】

(Ⅰ)由已知,得a,c1,所以,由 ,所以b,即可求出橢圓方程及離心率;(Ⅱ)設(shè)Ax1y1),Bx2,y2),,分兩種情況,借助韋達(dá)定理和向量的運(yùn)算,求出點(diǎn)M構(gòu)成的曲線(xiàn)L的方程為2x2+3y22y0,即可證明。

)由已知,得,所以,

,所以

所以橢圓的標(biāo)準(zhǔn)方程為,離心率.

)設(shè),, ,

①直線(xiàn)軸垂直時(shí),點(diǎn)的坐標(biāo)分別為,

因?yàn)?/span>,,

所以

所以,即點(diǎn)與原點(diǎn)重合;

②當(dāng)直線(xiàn)軸不垂直時(shí),設(shè)直線(xiàn)的方程為,

所以.

,

因?yàn)?/span>,

所以

所以,,,

消去

綜上,點(diǎn)構(gòu)成的曲線(xiàn)的方程為

對(duì)于曲線(xiàn)的任意一點(diǎn),它關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為

的坐標(biāo)代入曲線(xiàn)的方程的左端:

所以點(diǎn)也在曲線(xiàn)上.

所以由點(diǎn)構(gòu)成的曲線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的“8”字形曲線(xiàn)是由兩個(gè)關(guān)于軸對(duì)稱(chēng)的半圓和一個(gè)雙曲線(xiàn)的一部分組成的圖形,其中上半個(gè)圓所在圓方程是,雙曲線(xiàn)的左、右頂點(diǎn)、是該圓與軸的交點(diǎn),雙曲線(xiàn)與半圓相交于與軸平行的直徑的兩端點(diǎn).

1)試求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;

2)記雙曲線(xiàn)的左、右焦點(diǎn)為、,試在“8”字形曲線(xiàn)上求點(diǎn),使得是直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:()的離心率為,設(shè)直線(xiàn)過(guò)橢圓的上頂點(diǎn)和右頂點(diǎn),坐標(biāo)原點(diǎn)到直線(xiàn)的距離為.

1)求橢圓的方程.

2)過(guò)點(diǎn)且斜率不為零的直線(xiàn)交橢圓,兩點(diǎn),在軸的正半軸上是否存在定點(diǎn),使得直線(xiàn),的斜率之積為非零的常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,BC是拋物線(xiàn)Wy2=4x上的三個(gè)點(diǎn),Dx軸上一點(diǎn).

1)當(dāng)點(diǎn)BW的頂點(diǎn),且四邊形ABCD為正方形時(shí),求此正方形的面積;

2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形ABCD是否可能為正方形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校工會(huì)開(kāi)展健步走活動(dòng),要求教職工上傳31日至37日微信記步數(shù)信息,下圖是職工甲和職工乙微信記步數(shù)情況:

)從31日至37日中任選一天,求這一天職工甲和職工乙微信記步數(shù)都不低于10000的概率;

)從31日至37日中任選兩天,記職工乙在這兩天中微信記步數(shù)不低于10000的天數(shù)為,求 的分布列及數(shù)學(xué)期望;

)如圖是校工會(huì)根據(jù)31日至37日某一天的數(shù)據(jù),制作的全校200名教職工微信記步數(shù)的頻率分布直方圖.已知這一天甲和乙微信記步數(shù)在單位200名教職工中排名分別為第68和第142,請(qǐng)指出這是根據(jù)哪一天的數(shù)據(jù)制作的頻率分布直方圖(不用說(shuō)明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是等差數(shù)列,,且,成等比數(shù)列.

1)求的通項(xiàng)公式;

2)求的前項(xiàng)和的最小值;

3)若是等差數(shù)列,的公差不相等,且,問(wèn):中除第5項(xiàng)外,還有序號(hào)相同且數(shù)值相等的項(xiàng)嗎?(直接寫(xiě)出結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為20米,圓O的半徑為1米,圓心足正方形的中心,點(diǎn)P、Q分別在線(xiàn)段AD、CB上,若線(xiàn)段PQ與圓O有公共點(diǎn),則稱(chēng)點(diǎn)Q在點(diǎn)P的“盲區(qū)”中. 已知點(diǎn)P1.5/秒的速度從A出發(fā)向D移動(dòng),同時(shí),點(diǎn)Q1/秒的速度從C出發(fā)向B移動(dòng),則點(diǎn)PA移動(dòng)到D的過(guò)程中,點(diǎn)Q在點(diǎn)P的育區(qū)中的時(shí)長(zhǎng)約為________秒(精確到0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) 的兩條漸近線(xiàn)與拋物線(xiàn)的準(zhǔn)線(xiàn)分別交于兩點(diǎn).若雙曲線(xiàn)的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線(xiàn)的焦點(diǎn)坐標(biāo)為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在凸四邊形中,,則四邊形的面積最大值為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案