已知橢圓
:
的左、右頂點分別為
,
,
為短軸的端點,△
的面積為
,離心率是
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若點
是橢圓
上異于
,
的任意一點,直線
,
與直線
分別交于
,
兩點,證明:以
為直徑的圓與直線
相切于點
(
為橢圓
的右焦點).
(Ⅰ)
.(Ⅱ)證明:見解析。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作
,其中圓心P的坐標(biāo)為
.(1) 若FC是
的直徑,求橢圓的離心率;(2)若
的圓心在直線
上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)在平面直角坐標(biāo)系
中,已知橢圓
的離心率為
,其焦點在圓
上.
⑴求橢圓的方程;
⑵設(shè)
、
、
是橢圓上的三點(異于橢圓頂點),且存在銳角
,使
.
①試求直線
與
的斜率的乘積;
②試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.橢圓
上一點
到右準(zhǔn)線的距離為
,則該點到左焦點的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
(a>b>0)的左右焦點分別為F
1,F
2,P是橢圓上一點。
PF
1F
2為以F
2P為底邊的等腰三角形,當(dāng)60°<
PF
1F
2120°,則該橢圓的離心率的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)(注意:在試題卷上作答無效)
已知橢圓
的左、右焦點分別為
,若以
為圓心,
為半徑作圓
,過橢圓上一點
作此圓的切線,切點為
,且
的最小值不小于為
.
(1)求橢圓的離心率
的取值范圍;
(2)設(shè)橢圓的短半軸長為
,圓
與
軸的右交點為
,過點
作斜率為
的直線
與橢圓相交于
兩點,若
,求直線
被圓
截得的弦長
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的左、右焦點分別為F
1和F
2 ,以F
1、F
2為直徑的圓經(jīng)過點M(0,b).(1)求橢圓的方程;(2)設(shè)直線l與橢圓相交于A,B兩點,且
.求證:直線l在y軸上的截距為定值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,線段AB的兩個端點A、B分別在x軸,y軸上滑動,
,點M是線段AB上一點,且
點M隨線段AB的滑動而運動.
(I)求動點M的軌跡E的方程
(II)過定點N
的直線
交曲線E于C、D兩點,交y軸于點P,若
的值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
,順次連結(jié)橢圓
的四個頂點,所得四邊形的內(nèi)切圓與長軸的兩交點正好是長軸的兩個三等分點,則橢圓的離心率
等于( ).
查看答案和解析>>