13.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,長軸長為2$\sqrt{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A.
(1)求橢圓的方程;
(2)若點(diǎn)P為橢圓上一點(diǎn),且∠F1F2P=90°,求△F1F2P的面積;
(3)過點(diǎn)A作斜率為k1,k2的兩條直線,分別交橢圓于D,E兩點(diǎn),若D,E兩點(diǎn)關(guān)于原點(diǎn)對稱,求k1k2的值.

分析 (1)由題意可知:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點(diǎn)在x軸,2a=2$\sqrt{2}$,則a=$\sqrt{2}$,橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,c=1,由b2=a2-c2=1,則橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由PF2⊥F1P,P點(diǎn)坐標(biāo)為(1,±$\frac{\sqrt{2}}{2}$),△F1F2P的面積S=$\frac{1}{2}$丨F1F2丨•丨y丨=$\frac{1}{2}$•2•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$;
(3)設(shè)D(x1,y1),E(-x1,-y1),由直線AD的斜率k1=$\frac{{y-y}_{1}}{x-{x}_{1}}$=$\frac{1-{y}_{1}}{0-{x}_{1}}$,直線AE的斜率k2=$\frac{y+{y}_{1}}{x+{x}_{1}}$=$\frac{1+{y}_{1}}{{x}_{1}}$,y12=1-$\frac{{x}_{1}^{2}}{2}$,k1•k2=$\frac{1-{y}_{1}}{0-{x}_{1}}$•$\frac{1+{y}_{1}}{{x}_{1}}$=$\frac{1-{y}_{1}^{2}}{{x}_{1}^{2}}$=-$\frac{1}{2}$,即可求得k1k2的值.

解答 解:(1)由題意可知:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)焦點(diǎn)在x軸,2a=2$\sqrt{2}$,則a=$\sqrt{2}$,
橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
∴c=1,
由b2=a2-c2=1,
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由∠F1F2P=90°,
∴PF2⊥F1P,
則當(dāng)x=c=1時(shí),解得:y=±$\frac{\sqrt{2}}{2}$,
∴P點(diǎn)坐標(biāo)為(1,±$\frac{\sqrt{2}}{2}$),
由三角形的面積公式可知:△F1F2P的面積S=$\frac{1}{2}$丨F1F2丨•丨y丨=$\frac{1}{2}$•2•$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$,
∴△F1F2P的面積$\frac{\sqrt{2}}{2}$;
(3)點(diǎn)A(0,1),設(shè)D(x1,y1),E(-x1,-y1),
則y12=1-$\frac{{x}_{1}^{2}}{2}$,
由直線AD的斜率k1=$\frac{{y-y}_{1}}{x-{x}_{1}}$=$\frac{1-{y}_{1}}{0-{x}_{1}}$,直線AE的斜率k2=$\frac{y+{y}_{1}}{x+{x}_{1}}$=$\frac{1+{y}_{1}}{{x}_{1}}$,
∴k1•k2=$\frac{1-{y}_{1}}{0-{x}_{1}}$•$\frac{1+{y}_{1}}{{x}_{1}}$=-$\frac{1-{y}_{1}^{2}}{{x}_{1}^{2}}$=-$\frac{1}{2}$,
k1k2的值-$\frac{1}{2}$.

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查焦點(diǎn)三角形的面積公式,考查通徑的求法,直線的斜率公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,且PA=AD=2AB,點(diǎn)M,N分別在側(cè)棱PD,PC上,且$\overrightarrow{PM}=\overrightarrow{MD}$.
(1)求證:平面AMN⊥平面PCD;
(2)若$\overrightarrow{PN}=2\overrightarrow{NC}$,求平面AMN與平面PAB所成銳角的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x-2sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)y=f(x)在[-$\frac{π}{4}$,$\frac{π}{8}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x.
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=-1時(shí),證明$f(x)≥\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-a(x-1),其中a>0.
(Ⅰ)若函數(shù)f(x)在(0,+∞)上有極大值0,求a的值;(提示:當(dāng)且僅當(dāng)x=1時(shí),lnx=x-1);
(Ⅱ)令F(x)=f(x)+a(x-1)+$\frac{a}{x}$(0<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤$\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)討論并求出函數(shù)f(x)在區(qū)間$[\frac{1}{e},e]$上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{x}{lnx}-ax(x>0$且x≠1).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實(shí)數(shù)a的最小值;
(3)若?x∈[e,e2],使f(x)≤$\frac{1}{4}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-2x2+3x
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)證明:存在m∈(0,+∞),使得f(m)=f($\frac{1}{2}$)
(Ⅲ)記函數(shù)y=f(x)的圖象為曲線Γ.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線Γ上的不同兩點(diǎn).如果在曲線Γ上存在點(diǎn)M(x0,y0),使得:
①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;
②曲線Γ在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)f(x)存在“中值伴隨切線”,試問:函數(shù)f(x)是否存在“中值伴隨切線”?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,若過點(diǎn)F且斜率為1的直線與拋物線相交于M,N兩點(diǎn),且|MN|=8.
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C有且只有一個(gè)公共點(diǎn),且l∥MN,點(diǎn)P在直線l上運(yùn)動,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值,并判斷此時(shí)點(diǎn)P與以MN為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義函數(shù)F(a,b)=$\frac{1}{2}$(a+b-|a-b|)(a,b∈R),設(shè)函數(shù)f(x)=-x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為(  )
A.4B.6C.$4-2\sqrt{5}$D.$2\sqrt{5}+2$

查看答案和解析>>

同步練習(xí)冊答案