19.已知角θ的頂點在平面直角坐標(biāo)系xOy原點O,始邊為x軸正半軸,終邊在直線x-2y=0上,則sin2θ=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

分析 利用任意角的三角函數(shù)的定義求得tanθ,再利用同角三角函數(shù)的基本關(guān)系、二倍角的正弦公式,求得sin2θ的值

解答 解:∵角θ的頂點在平面直角坐標(biāo)系xOy原點O,始邊為x軸正半軸,終邊在直線x-2y=0上,
∴tanθ=$\frac{1}{2}$,
則sin2θ=$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$=$\frac{2tanθ}{{tan}^{2}θ+1}$=$\frac{4}{5}$,
故選:A.

點評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、二倍角的正弦公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平面內(nèi)A,B,C,D這4個點中任何3個點都不在一條直線上,寫出由其中每3點為頂點的所有三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.平面四邊形ABCD中,根據(jù)向量關(guān)系( 。,可推知其為平行四邊形.
A.$\overrightarrow{AB}$=2$\overrightarrow{DC}$B.$\overrightarrow{AB}$=-$\overrightarrow{CD}$C.|$\overrightarrow{AB}$|=|$\overrightarrow{DC}$|D.|$\overrightarrow{AB}$|=|$\overrightarrow{BC}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|2x2-7x≥0},B={x|x>3},則集合A∩B=(  )
A.(3,+∞)B.[$\frac{7}{2}$,+∞)C.(-∞,0}]∪[$\frac{7}{2}$,+∞)D.(-∞,0]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,已知BC=4,AC=3,cos(A-B)=$\frac{3}{4}$,則△ABC的面積為$\frac{3\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,且acosB-bcosA=$\frac{1}{2}$c,則$\frac{tanA}{tanB}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(m,4),$\overrightarrow$=(m+4,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)+$\frac{{\sqrt{3}}}{2}$cos(2x-$\frac{π}{3}$)是( 。
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為 π的偶函數(shù)D.最小正周期為 π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解關(guān)于x的不等式x2+(m-m2)x-m3>0.

查看答案和解析>>

同步練習(xí)冊答案