17.?dāng)?shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,…,$\frac{1}{m+1}$,$\frac{2}{m+1}$,…,$\frac{m}{m+1}$…的第20項是$\frac{5}{7}$.

分析 易見數(shù)列規(guī)律:分母為m+1的項共有m項.由1+2+…+n=$\frac{n(n+1)}{2}$,可得n=5時,$\frac{n(n+1)}{2}$=15,n=6時,$\frac{n(n+1)}{2}$=21,即可得出結(jié)論.

解答 解:易見數(shù)列規(guī)律:分母為m+1的項共有m項.
由1+2+…+n=$\frac{n(n+1)}{2}$,可得n=5時,$\frac{n(n+1)}{2}$=15,n=6時,$\frac{n(n+1)}{2}$=21,
∴數(shù)列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,…,$\frac{1}{m+1}$,$\frac{2}{m+1}$,…,$\frac{m}{m+1}$…的第20項是$\frac{5}{7}$.
故答案為$\frac{5}{7}$.

點評 本題考查歸納推理,考查等差數(shù)列的通項公式,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=(x-2)2+1的圖象向左、向下分別平移2個單位,得到y(tǒng)=f(x)的圖象,則函數(shù)f(x)=y=x2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知Sn為數(shù)列{an}的前n項和,且滿足a1=1,Sn+1=4Sn+1.
(1)求數(shù)列{an}的通項公式;
(2)求證:$\sqrt{{a_1}-1}+\sqrt{{a_2}-1}+…+\sqrt{{a_n}-1}$<2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定點A(4,0),P點是圓x2+y2=4上一動點,Q點是AP的中點,求Q點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.斜率為1的動直線L與橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$交于P,Q兩點,M是L上的點,且滿足|MP|•|MQ|=2,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{{tan{{18}°}+tan{{42}°}+tan{{120}°}}}{{tan{{198}°}tan{{222}°}}}$=(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\vec a$,$\vec b$的夾角為$\frac{π}{3}$,且$\vec a•(\vec a-\vec b)=1$,$|\vec a|=2$,則$|\vec b|$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{f(x+6),x≤0}\end{array}\right.$,則f(-8)的值是(  )
A.-2B.2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知偶函數(shù)f(x)的定義域是R,且f(x)在(0,+∞)是增函數(shù),則a=f(-2),b=f(π),c=f(-3)的大小關(guān)系是( 。
A.a<c<bB.b<a<cC.b<c<aD.c<a<b

查看答案和解析>>

同步練習(xí)冊答案