分析 根據(jù)積分的知識(shí)可得先求y=-x2+2x與x軸圍成的封閉區(qū)域?yàn)镸的面積,再求出S陰影,最后代入幾何概率的計(jì)算公式可求.
解答 解:令y=-x2+2x=0,解得x=0或x=2,
∴由拋物線y=-x2+2x與x軸圍成的封閉區(qū)域SM=${∫}_{0}^{2}$(-x2+2x)dx=(-$\frac{1}{3}$x3+x2)|${\;}_{0}^{2}$=-$\frac{8}{3}$+4=$\frac{4}{3}$,
由$\left\{\begin{array}{l}{y=-{x}^{2}+2x}\\{y=x}\end{array}\right.$,解得x=0或x=1,
∴由拋物線y=-x2+2x與y=x圍成的封閉區(qū)域
S陰影=${∫}_{0}^{1}$((-x2+2x-x)dx=${∫}_{0}^{1}$((-x2+x)dx=(-$\frac{1}{3}$x3+$\frac{1}{2}$x2)|${\;}_{0}^{1}$=-$\frac{1}{3}$+$\frac{1}{2}$=$\frac{1}{6}$,
故則P(y>x)=$\frac{{S}_{陰影}}{{S}_{M}}$=$\frac{\frac{1}{6}}{\frac{4}{3}}$=$\frac{1}{8}$,
故答案為:$\frac{1}{8}$
點(diǎn)評(píng) 本題主要考查了利用積分求解曲面的面積,還考查了幾何概率的計(jì)算公式的應(yīng)用,屬于基礎(chǔ)試題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | $-\sqrt{3}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$+1 | B. | $\sqrt{2}$-1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com