分析 由約束條件作出可行域,再由x2+y2的幾何意義,即坐標(biāo)原點(diǎn)與可行域內(nèi)點(diǎn)的距離的平方求得答案.
解答 解:由約束條件作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y-2=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即A(3,1),
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即B(1,3),
而|OA|2=|OB|2=10.
x2+y2的幾何意義為坐標(biāo)原點(diǎn)與可行域內(nèi)點(diǎn)的距離的平方.
由圖可知,$({x}^{2}+{y}^{2})_{max}=|OA{|}^{2}=|OB{|}^{2}=10$.
故答案為:10.
點(diǎn)評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,2x≠3 | B. | ?x>0,2x≠3 | C. | ?x≤0,2x=3 | D. | ?x≤0,2x≠3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16個 | B. | 8個 | C. | 4個 | D. | 2個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com