【題目】如圖,三棱柱中, 平面, .過的平面交于點(diǎn),交于點(diǎn).

(l)求證: 平面

(Ⅱ)求證:四邊形為平行四邊形;

(Ⅲ)若是,求二面角的大。

【答案】(1)見解析(2) 見解析(3)

【解析】試題分析:(Ⅰ)由線面垂直的性質(zhì) 可得,由菱形的性質(zhì)可得.從而由線面垂直的判定定理可得平面;(Ⅱ)先證明平面再根據(jù)線面平行的性質(zhì)可得,根據(jù)面面平行的性質(zhì)可得,從而得四邊形為平行四邊形;(Ⅲ)在平面內(nèi),過.因?yàn)?/span> 平面,所以,以 為軸建立空間直角坐標(biāo)系,可知平面的法向量為,根據(jù)向量垂直數(shù)量積為零列方程組求出平面的法向量,利用空間向量夾角余弦公式可得結(jié)果.

試題解析:)因?yàn)?/span> 平面,所以

因?yàn)?/span> 三棱柱 ,所以 四邊形為菱形,

所以 在平面內(nèi)相交.

所以 平面

因?yàn)?/span> , 平面,所以 平面

因?yàn)?/span> 平面平面,所以

因?yàn)?/span> 平面平面,

平面平面,平面平面

所以

所以 四邊形為平行四邊形

在平面內(nèi),過

因?yàn)?/span> 平面

如圖建立空間直角坐標(biāo)系

由題意得, , , ,

因?yàn)?/span> ,所以 ,

所以

得平面的法向量為

設(shè)平面的法向量為,

,則, ,所以

所以

由圖知 二面角的平面角是銳角,

所以 二面角的大小為

【方法點(diǎn)晴】本題主要考查線面垂直的判定定理、線面平行的性質(zhì)、面面平行的直線以及利用空間向量求二面角,屬于難題. 空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若,則稱為狄利克雷函數(shù).對(duì)于狄利克雷函數(shù)給出下面4個(gè)命題:①對(duì)任意,都有;②對(duì)任意,都有;③對(duì)任意都有, ;④對(duì)任意,都有.其中所有真命題的序號(hào)是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=1,an+1 (n∈N*).

(1)證明:數(shù)列是等比數(shù)列;

(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年底某購(gòu)物網(wǎng)站為了解會(huì)員對(duì)售后服務(wù)(包括退貨、換貨、維修等)的滿意度,從年下半年的會(huì)員中隨機(jī)調(diào)查了個(gè)會(huì)員,得到會(huì)員對(duì)售后服務(wù)的滿意度評(píng)分如下:

根據(jù)會(huì)員滿意度評(píng)分,將會(huì)員的滿意度從低到高分為三個(gè)等級(jí):

滿意度評(píng)分

低于

分到

不低于

滿意度等級(jí)

不滿意

比較滿意

非常滿意

(1)根據(jù)這個(gè)會(huì)員的評(píng)分,估算該購(gòu)物網(wǎng)站會(huì)員對(duì)售后服務(wù)比較滿意和非常滿意的頻率;

(2)以(1)中的頻率作為概率,假設(shè)每個(gè)會(huì)員的評(píng)價(jià)結(jié)果相互獨(dú)立.

(i)若從下半年的所有會(huì)員中隨機(jī)選取個(gè)會(huì)員,求恰好一個(gè)評(píng)分比較滿意,另一個(gè)評(píng)分非常滿意的概率;

(ii)若從下半年的所有會(huì)員中隨機(jī)選取個(gè)會(huì)員,記評(píng)分非常滿意的會(huì)員的個(gè)數(shù)為,求的分布列,數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了治理大氣污染,某市2017年初采用了一系列措施,比如“煤改電”,“煤改氣”,“國(guó)Ⅰ,Ⅱ輕型汽油車限行”,“整治散亂污染企業(yè)”等.下表是該市2016年和2017年12月份的空氣質(zhì)量指數(shù)(AQI)(AQI指數(shù)越小,空氣質(zhì)量越好)統(tǒng)計(jì)表.

表1:2016年12月AQI指數(shù)表:?jiǎn)挝唬?/span>

日期

1

2

3

4

5

6

7

8

9

10

11

AQI

47

123

232

291

78

103

159

132

37

67

204

日期

12

13

14

15

16

17

18

19

20

21

22

AQI

270

78

40

51

135

229

270

265

409

429

151

日期

23

24

25

26

27

28

29

30

31

AQI

47

155

191

64

54

85

75

249

329

表2:2017年12月AQI指數(shù)表:?jiǎn)挝唬?/span>

日期

1

2

3

4

5

6

7

8

9

10

11

AQI

91

187

79

28

44

49

27

41

56

43

28

日期

12

13

14

15

16

17

18

19

20

21

22

AQI

28

49

94

62

40

46

48

55

44

74

62

日期

23

24

25

26

27

28

29

30

31

AQI

50

50

46

41

101

140

221

157

55

根據(jù)表中數(shù)據(jù)回答下列問題

(Ⅰ)求出2017年12月的空氣質(zhì)量指數(shù)的極差;

)根據(jù)《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》規(guī)定:當(dāng)空氣質(zhì)量指數(shù)為050時(shí),空氣質(zhì)量級(jí)別為一級(jí).從2017年12月12日到12月16這五天中,隨機(jī)抽取三天,空氣質(zhì)量級(jí)別為一級(jí)的天數(shù)為,求的分布列及數(shù)學(xué)期望;

(Ⅲ)你認(rèn)為該市2017年初開始采取的這些大氣污染治理措施是否有效?結(jié)合數(shù)據(jù)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)與拋物線的焦點(diǎn)重合,橢圓的離心率為,過橢圓的右焦點(diǎn)且垂直于軸的直線截拋物線所得的弦長(zhǎng)為.

(1)求橢圓和拋物線的方程;

(2)過點(diǎn)的直線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校初三年級(jí)有名學(xué)生,隨機(jī)抽查了名學(xué)生,測(cè)試分鐘仰臥起坐的成績(jī)(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計(jì)總體,下列結(jié)論正確的是( )

A. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為

B. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為

C. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)超過次的人數(shù)約有

D. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實(shí)驗(yàn)得出,在一定范圍內(nèi),每噴灑1個(gè)單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時(shí)間x(單位:天)變化的函數(shù)關(guān)系式近似為y 若多次噴灑,則某一時(shí)刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時(shí)刻所釋放的濃度之和.由實(shí)驗(yàn)知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時(shí),它才能起到凈化空氣的作用.

(1)若一次噴灑4個(gè)單位的凈化劑,則凈化時(shí)間可達(dá)幾天?

(2)若第一次噴灑2個(gè)單位的凈化劑,6天后再噴灑a(1≤a≤4)個(gè)單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

同步練習(xí)冊(cè)答案