14.如圖所示,在△ABC中,D為邊AC的中點(diǎn),BC=3BE,其中AE與BD交于O點(diǎn),延長CO交邊AB于F點(diǎn),則$\frac{FO}{OC}$=$\frac{1}{3}$.

分析 取AE的中點(diǎn)M,連接DM,確定BO=DO,取CF的中點(diǎn)N,連接DN,則FO=ON,即可得出結(jié)論.

解答 解:取AE的中點(diǎn)M,連接DM,則EC=2DM,
∵BC=3BE,∴EC=2BE,
∴DM=BE,∴BO=DO.
取CF的中點(diǎn)N,連接DN,則FO=ON,
∵CN=FN,∴CO=3FO,
∴$\frac{FO}{CO}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評 本題考查三角形中位線的性質(zhì),考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在正三棱柱ABC-A1B1C1中,P、Q、R分別是BC、CC1、A1C1的中點(diǎn),作出過三點(diǎn)P、Q、R截正三棱柱的截面并說出該截面的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由1,2,3,4,7這五個數(shù)字可以組成72個沒有重復(fù)數(shù)字的五位奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=2x+x3-2在區(qū)間(0,1)內(nèi)的零點(diǎn)個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知α,β∈(0,$\frac{π}{2}$),sin(α-β)=$\frac{3}{5}$,cosβ=$\frac{12}{13}$,則sinα=$\frac{56}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}是等差數(shù)列,若它的前n項和Sn有最大值,且$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,則使Sn>0成立的自然數(shù)n的最小值為( 。
A.10B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲、乙兩名射手在同一條件下射擊,所得環(huán)數(shù)X1,X2的分布列分別為
 X1 610 
 P 0.160.14 0.42 0.1 0.18 
 X2 6 710 
 P 0.190.24 0.12 0.28 0.17 
根據(jù)環(huán)數(shù)的均值和方差比較這兩名射手的射擊水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在棱長為1的正方體ABCD-A1B1C1D1中.
(1)求異面直線BC1與AA1所成的角的大。
(2)求三棱錐B1-A1C1B的體積;
(3)求證:BD1⊥面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:(單位:萬元)
收入x8.28.610.011.311.9
支出y6.27.58.08.59.8
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測該社區(qū)一戶收入為15萬元家庭年支出為多少?

查看答案和解析>>

同步練習(xí)冊答案