【題目】設(shè)奇函數(shù)f (x )的定義域?yàn)?/span>R , 且, 當(dāng)x時(shí)f (x)=, 則f (x )在區(qū)間上的表達(dá)式為
A. B.
C. D.
【答案】B
【解析】
由f(x+4)=f(x),可得原函數(shù)的周期,再結(jié)合奇偶性,把自變量的范圍[﹣2,0]轉(zhuǎn)化到上,則f (x )在區(qū)間上的表達(dá)式可求.
當(dāng)x∈時(shí),﹣x∈[0,2],
∴﹣x+4∈[4,6],
又∵當(dāng)x∈[4,6]時(shí),f(x)=2x+1,
∴f(﹣x+4)=2﹣x+4+1.
又∵f(x+4)=f(x),
∴函數(shù)f(x)的周期為T=4,
∴f(﹣x+4)=f(﹣x),
又∵函數(shù)f(x)是R上的奇函數(shù),
∴f(﹣x)=﹣f(x),
∴﹣f(x)=2﹣x+4+1,
∴當(dāng)x∈[﹣2,0]時(shí),f(x)=﹣2﹣x+4﹣1.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)平面上點(diǎn)對(duì)應(yīng)的復(fù)數(shù) (為虛數(shù)單位)滿(mǎn)足,點(diǎn)的軌跡方程為曲線(xiàn). 雙曲線(xiàn):與曲線(xiàn)有共同焦點(diǎn),傾斜角為的直線(xiàn)與雙曲線(xiàn)的兩條漸近線(xiàn)的交點(diǎn)是、,,為坐標(biāo)原點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)求直線(xiàn)的方程;
(3)設(shè)△PQR三個(gè)頂點(diǎn)在曲線(xiàn)上,求證:當(dāng)是△PQR重心時(shí),△PQR的面積是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別是,且離心率為,點(diǎn)為橢圓上的動(dòng)點(diǎn),面積最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是橢圓上的動(dòng)點(diǎn),且直線(xiàn)經(jīng)過(guò)定點(diǎn),問(wèn)在軸上是否存在定點(diǎn),使得若存在,請(qǐng)求出定點(diǎn),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線(xiàn)性回歸方程;
(2)根據(jù)線(xiàn)性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:,.(參考數(shù)據(jù): ,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F.
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了解所經(jīng)銷(xiāo)商品的使用情況,隨機(jī)問(wèn)卷50名使用者,然后根據(jù)這50名的問(wèn)卷評(píng)分?jǐn)?shù)據(jù),統(tǒng)計(jì)得到如圖所示的頻率布直方圖,其統(tǒng)計(jì)數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計(jì)這50名使用者問(wèn)卷評(píng)分?jǐn)?shù)據(jù)的中位數(shù);
(2)從評(píng)分在[40,60)的問(wèn)卷者中,隨機(jī)抽取2人,求此2人評(píng)分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)射線(xiàn)與圓C的交點(diǎn)為與直線(xiàn)的交點(diǎn)為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足,且.
(Ⅰ)求,的值;
(Ⅱ)是否存在實(shí)數(shù),,使得,對(duì)任意正整數(shù)恒成立?若存在,求出實(shí)數(shù)、的值并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展,平臺(tái)對(duì)每次成功交易都有針對(duì)商品和快遞是否滿(mǎn)意的評(píng)價(jià)系統(tǒng).從該評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購(gòu)者對(duì)商品的滿(mǎn)意率為0.70,對(duì)快遞的滿(mǎn)意率為0.60,商品和快遞都滿(mǎn)意的交易為80
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答能否有99%認(rèn)為“網(wǎng)購(gòu)者對(duì)商品滿(mǎn)意與對(duì)快遞滿(mǎn)意之間有關(guān)系”?
對(duì)快遞滿(mǎn)意 | 對(duì)快遞不滿(mǎn)意 | 合計(jì) | |
對(duì)商品滿(mǎn)意 | 80 | ||
對(duì)商品不滿(mǎn)意 | |||
合計(jì) | 200 |
(2)若將頻率視為概率,某人在該網(wǎng)購(gòu)平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和快遞都滿(mǎn)意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望E(x).
附:,
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com