方程3x=x+2解的個數(shù)是
 
考點(diǎn):根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:構(gòu)造函數(shù)y=3x,y=x+2,畫出圖象函數(shù)圖象的交點(diǎn)個數(shù)即可.
解答: 解:構(gòu)造函數(shù)y=3x,y=x+2,畫出圖象,
有2個交點(diǎn),
∴方程3x=x+2解的個數(shù)是2,


故答案為:2
點(diǎn)評:本題考查了函數(shù)的圖象,運(yùn)用圖象求解方程的解的個數(shù),屬于容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=2x2-3x+3的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,圓O的直徑為BD,過圓上一點(diǎn)A作圓O的切線AE,過點(diǎn)D作DE⊥AE于點(diǎn)E,延長ED與圓O交于點(diǎn)C.
(1)證明:DA平分∠BDE;
(2)若AB=4,AE=2,求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下命題正確的個數(shù)為
 

①因?yàn)閿?shù)列可以看出函數(shù),所以每個數(shù)列均有通項(xiàng)公式;
②引入向量坐標(biāo)的理論依據(jù)是平面向量的分解定理;
③由于矩陣與行列式都用行與列的形式呈現(xiàn)數(shù)據(jù),因此兩者本質(zhì)上沒區(qū)別;
④確定一條直線的基本要素是點(diǎn)和方向,兩者缺一不可;
⑤過點(diǎn)P(x0,y0)且與向量
d
=(u,v)
平行的直線方程是
x-x0
u
=
y-y0
v

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)fn(x)=anx3+bnx2+cnx,滿足
an+1
an
=
bn+1
bn
=
cn+1
cn
=q(q>1,q為常數(shù)),n∈N*,給出下列說法;
①函數(shù)fn(x)可以為奇函數(shù);
②若函數(shù)f1(x)在R上單調(diào)遞增,則對于任意正整數(shù)n,函數(shù)fn(x)都在R上單調(diào)遞增;
③若x0是函數(shù)fn(x)的極值點(diǎn),則x0也是函數(shù)fn+1(x)的極值點(diǎn);
④若b12>3a1c1,則對于任意正整數(shù)n函數(shù)fn(x)在R上一定有極值.
以上說法中所有正確的序號是( 。
A、①②③④B、②③
C、②③④D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分某種零件按質(zhì)量標(biāo)準(zhǔn)分為五個等級.現(xiàn)從一批該零件中隨機(jī)抽取20個,對其等級進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:
等級
頻率0.050.35m0.350.10
(Ⅰ)求m;
(Ⅱ)從等級為三和五的所有零件中,任意抽取2個,求抽取的2個零件等級恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)|x-1|+|x-2|<2;         
(2)0<x-
1
x
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓x2+y2=45到4x+3y-12=0的距離最小的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 已知函數(shù)f(x)=
|log4x,0<x≤4
-
1
2
x+3,x>4

(1)畫出函數(shù)f(x)的圖象;
(2)若a,b,c互不相等,且f(a)=f(b)=f(c),求abc的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案