20.如圖,AB為圓O的直徑且AB=4,C為圓上不同于A、B的任意一點(diǎn),若P為半徑OC上的動(dòng)點(diǎn),則($\overrightarrow{PA}$+$\overrightarrow{PB}$)•$\overrightarrow{PC}$的最小值是( 。
A.-4B.-3C.-2D.-1

分析 根據(jù)條件,可設(shè)$\overrightarrow{PO}=x\overrightarrow{CO}$,從而得出$\overrightarrow{PC}=(x-1)\overrightarrow{CO}$,并且0≤x≤1,這樣便可得出$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}=8({x}^{2}-x)$,配方即可求出8(x2-x)的最小值,從而得出答案.

解答 解:設(shè)$\overrightarrow{PO}=x\overrightarrow{CO}$,則$\overrightarrow{CP}=(1-x)\overrightarrow{CO}$,0≤x≤1;
∴$\overrightarrow{PC}=(x-1)\overrightarrow{CO}$;
∴$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$
=$2\overrightarrow{PO}•\overrightarrow{PC}$
=$2x(x-1){\overrightarrow{CO}}^{2}$
=8(x2-x)
=$8(x-\frac{1}{2})^{2}-2$;
∴$x=\frac{1}{2}$時(shí),$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$取最小值-2.
故選:C.

點(diǎn)評(píng) 考查向量數(shù)乘的幾何意義,向量加法的平行四邊形法則,向量數(shù)量積的計(jì)算公式,以及配方法求二次函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ2-4ρcosθ+1=0,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+\sqrt{3}t\\ y=\sqrt{3}+t\end{array}\right.$(t為參數(shù)),點(diǎn)A的極坐標(biāo)為$({2\sqrt{3},\frac{π}{6}})$,設(shè)直線l與曲線C相交于P,Q兩點(diǎn).
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)求|AP|•|AQ|•|OP|•|OQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,設(shè)邊a,b,c所對(duì)的角分別為A,B,C,A,B,C都不是直角,且accosB+bccosA=a2-b2+8cosA
(Ⅰ)若sinB=2sinC,求b,c的值;
(Ⅱ)若$a=\sqrt{6}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線${C_1}:{y^2}=2px(p>0)$的焦點(diǎn)為F,準(zhǔn)線為l,圓${C_2}:{x^2}+{y^2}={p^2}$被直線l截得的線段長(zhǎng)為$2\sqrt{3}$.
(1)求拋物線C1和圓C2的方程;
(2)設(shè)直線l與x軸的交點(diǎn)為A,過(guò)點(diǎn)A的直線n與拋物線C1交于M、N兩點(diǎn),求證:直線MF的斜率與直線NF的斜率的和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=$|\begin{array}{l}{sinx}&{2cosx}\\{2cosx}&{sinx}\end{array}|$的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.中國(guó)南北朝時(shí)期的著作《孫子算經(jīng)》中,對(duì)同余除法有較深的研究.設(shè)a,b,m(m>0)為整數(shù),若a和b
被m除得的余數(shù)相同,則稱a和b對(duì)模m同余,記為a=b(bmodm).若$a=C_{20}^0+C_{20}^1•2+C_{20}^2•{2^2}+…+C_{20}^{20}•{2^{20}}$,a=b(bmod10),則b的值可以是( 。
A.2011B.2012C.2013D.2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某屆奧運(yùn)會(huì)上,中國(guó)隊(duì)以26金18銀26銅的成績(jī)稱金牌榜第三、獎(jiǎng)牌榜第二,某校體育愛(ài)好者在高三  年級(jí)一班至六班進(jìn)行了“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如表:
 班號(hào) 一班 二班三班  四班 五班 六班
 頻數(shù) 5 9 11 9 7 9
 滿意人數(shù) 4 7 8 5 6 6
(1)在高三年級(jí)全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計(jì)數(shù)據(jù)估計(jì)該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對(duì)象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對(duì)“本屆奧運(yùn)會(huì)中國(guó)隊(duì)表現(xiàn)”不滿意的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,底面△ABC是等邊三角形,側(cè)面AA1B1B為正方形,且AA1⊥平面ABC,D為線段AB上的一點(diǎn).
(Ⅰ) 若BC1∥平面A1CD,確定D的位置,并說(shuō)明理由;
(Ⅱ) 在(Ⅰ)的條件下,求二面角A1D-C-BC1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ex-x2+ax,曲線y=f(x)在點(diǎn)(0,f(0))處的切線與x軸平行.
(Ⅰ)求a的值;
(Ⅱ)若g(x)=ex-2x-1,求函數(shù)g(x)的最小值;
(Ⅲ)求證:存在c<0,當(dāng)x>c時(shí),f(x)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案