15.已知數(shù)列{an}滿(mǎn)足an+1=an+$\frac{1}{{2}^{n}}$,a1=1,則an=(  )
A.2(1-$\frac{1}{{2}^{n}}$)B.2(1+$\frac{1}{{2}^{n}}$)C.2($\frac{1}{{2}^{n}}$-1)D.2($\frac{1}{{2}^{n}}$+1)

分析 由an+1-an=$\frac{1}{{2}^{n}}$,采用“累加法”,根據(jù)等比數(shù)列的前n項(xiàng)和公式,即可求得數(shù)列{an}的通項(xiàng)公式.

解答 解:由an+1-an=$\frac{1}{{2}^{n}}$,
a2-a1=$\frac{1}{2}$,
a3-a2=$\frac{1}{{2}^{2}}$,
a4-a3=$\frac{1}{{2}^{3}}$,

an-an-1=$\frac{1}{{2}^{n-1}}$,
累加得:an-a1=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$=$\frac{\frac{1}{2}-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
∴an=2-$\frac{1}{{2}^{n-1}}$=2(1-$\frac{1}{{2}^{n}}$),
故選:A.

點(diǎn)評(píng) 本題考查根據(jù)遞推公式求數(shù)列的通項(xiàng)公式,考查“累加法”,等比數(shù)列前n項(xiàng)和公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={a,$\frac{a}$,1},B={a2,a+b,0},若A=B,求a2012+b2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{-2}{x}$(x∈(-2,0))是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.求下列函數(shù)的解析式
(1)已知f(x+1)=x2求f(x)
(2)已知f($\frac{1-x}{1+x}$)=x,求f(x)
(3)已知函數(shù)f(x)為一次函數(shù),使f[f(x)]=9x+1,求f(x)
(4)已知3f(x)-f($\frac{1}{x}$)=x2,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=x+$\frac{a}{x}$(a>0).
(1)求函數(shù)f(x)在x∈[1,3]上的最小值和最大值(直接寫(xiě)出結(jié)果即可):
(2)若函數(shù)g(x)=f(x2)-$\frac{a}{{x}^{2}}$+$\frac{4}{x}$在(0,t]上是減函數(shù),求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.長(zhǎng)方體中,AB=5,BC=4,BB1=3,則點(diǎn)A1到B1D的距離$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列說(shuō)法:
①y=f(x)與y=f(t)表示同一函數(shù);
②y=f(x)與y=f(x+1)不可能是同一個(gè)函數(shù);
③f(x)=1與g(x)=x0是同一個(gè)函數(shù):
④定義域和值域都相同的兩個(gè)函數(shù)是同一個(gè)函數(shù),
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)f(x)=3x2-1,則f(2)=11,f(x+1)=3x2+6x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.關(guān)于x的方程|x|+|1-x|=a有解的充要條件是[1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案