2.若x,y滿(mǎn)足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x,y∈{N^*}\end{array}\right.$,則y-2x的最大值為( 。
A.3B.2C.0D.-2

分析 首先作出可行域,再作出直線(xiàn)l0:y=2x,將l0平移與可行域有公共點(diǎn),直線(xiàn)y=2x+z在y軸上的截距最大時(shí),z有最大值,求出此時(shí)直線(xiàn)y=2x+z經(jīng)過(guò)的可行域內(nèi)的點(diǎn)的坐標(biāo),代入z=y-2x中即可.

解答 解:如圖,作出x,y滿(mǎn)足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-3≤0\\ x,y∈{N^*}\end{array}\right.$的可行域,由$\left\{\begin{array}{l}{2x+y-2=0}\\{x+y-3=0}\end{array}\right.$解得A(-1,4)
作出直線(xiàn)l0:y=2x,將l0平移至過(guò)點(diǎn)A處時(shí),函數(shù)z=y-2x有最大值4+2=6.
故選:C.

點(diǎn)評(píng) 本題考查線(xiàn)性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知復(fù)數(shù)z滿(mǎn)足(1-i)z=$\sqrt{3}$+i(i是虛數(shù)單位),則z的模為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某樣本中共有5個(gè)個(gè)體,其中四個(gè)值分別為0,1,2,3,第五個(gè)值丟失,但該樣本的平均值為1,則樣本方差為( 。
A.2B.$\frac{6}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,花壇內(nèi)有5個(gè)花池,有5種不同顏色的花卉可供栽種,每個(gè)花池內(nèi)只能載一種顏色的花卉,相鄰兩池的花色不同,則栽種方案的種數(shù)為( 。
A.420B.240C.360D.540

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知向量$\overrightarrow m=({2cos\frac{A}{2},sin\frac{A}{2}})$,$\overrightarrow n=({cos\frac{A}{2},-2sin\frac{A}{2}})$,$\overrightarrow m•\overrightarrow n=-1$.
(1)求cosA的值;
(2)若$a=2\sqrt{3}$,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.拋物線(xiàn)y2=4x與直線(xiàn)x=1圍成的封閉區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=$\sqrt{2-{x^2}}$-x+b有一個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為{2}∪($-\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值4.
(I)求實(shí)數(shù)a,b的值;
(Ⅱ)當(dāng)a>0時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(-2,f(-2))處的切線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$\frac{{sin{{40}°}-\sqrt{3}cos{{20}°}}}{{cos{{10}°}}}$=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案