【題目】已知直三棱柱中,為等腰直角三角形,,且,分別為,,的中點(diǎn).
(1)求證:直線平面;
(2)求與平面所成角的正弦值.
【答案】(1)見解析;(2)
【解析】
(1) 根據(jù)直線與平面平行的判定定理可知,只要在平面ABC里面找到一條直線與DE平行即可,過DE構(gòu)造平行四邊形,使其與平面ABC相交,則可得DE與交線平行,所以進(jìn)一步可得DE∥平面ABC;
(2) 以點(diǎn)A為坐標(biāo)原點(diǎn),如圖建立空間直角坐標(biāo)系O﹣xyz,求出直線的方向向量,平面的法向量,代入公式,即可得到結(jié)果.
(1)設(shè)AB的中點(diǎn)為G,連接DG,CG,則,
四邊形DGCE為平行四邊形,∴DE∥GC,又DEABC,GCABC∴DE∥平面ABC.
(2)以點(diǎn)A為坐標(biāo)原點(diǎn),的方向?yàn)?/span>軸的正方向建立空間直角坐標(biāo)系,
設(shè),則,,,設(shè)平面的法向量,
則,令,則.
設(shè)與平面所成的角為,
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),且是它的極值點(diǎn).
(1)求的值;
(2)求在上的最大值;
(3)設(shè),證明:對(duì)任意, 都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱柱中,已知AB=2, ,
E、F分別為、上的點(diǎn),且.
(1)求證:BE⊥平面ACF;
(2)求點(diǎn)E到平面ACF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某二手交易市場(chǎng)對(duì)某型號(hào)的二手汽車的使用年數(shù)()與銷售價(jià)格(單位:萬(wàn)元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
銷售價(jià)格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)試求關(guān)于的回歸直線方程.
(參考公式:,)
(II)已知每輛該型號(hào)汽車的收購(gòu)價(jià)格為萬(wàn)元,根據(jù)(I)中所求的回歸方程,預(yù)測(cè)為何值時(shí),銷售一輛該型號(hào)汽車所獲得的利潤(rùn)最大?(利潤(rùn)=銷售價(jià)格-收購(gòu)價(jià)格)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4男3女站成一排,求滿足下列條件的排法共有多少種?
任何兩名女生都不相鄰,有多少種排法?
男甲不在首位,男乙不在末位,有多少種排法?
男生甲、乙、丙順序一定,有多少種排法?
男甲在男乙的左邊不一定相鄰有多少種不同的排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),一個(gè)長(zhǎng)軸端點(diǎn)為,離心率,過P分別作斜率為的直線PA,PB,交橢圓于點(diǎn)A,B。
(1)求橢圓的方程;
(2)若,則直線AB是否經(jīng)過某一定點(diǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·吉林期末]一個(gè)袋中裝有6個(gè)大小形狀完全相同的球,球的編號(hào)分別為1,2,3,4,5,6.
(1)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號(hào)之和為6的概率;
(2)先后有放回地隨機(jī)抽取兩個(gè)球,兩次取的球的編號(hào)分別記為和,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn.
(1)求an及Sn;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com