【題目】已知圓.
(1)若圓的切線在軸、軸上的截距相等,求切線的方程;
(2)若點(diǎn)是圓C上的動(dòng)點(diǎn),求的取值范圍.
【答案】(1)或或;(2)
【解析】
(1)求出圓心和半徑.當(dāng)切線過原點(diǎn)時(shí),設(shè)切線方程為,利用圓心到直線的距離等于半徑,求得的值.當(dāng)切線不過原點(diǎn)時(shí),切線方程為,利用圓心到直線的距離等于半徑,求得的值.
(2)將問題轉(zhuǎn)化為直線與圓有公共點(diǎn),由圓心到直線的距離不大于半徑列不等式,解不等式求得的取值范圍.
(1)由方程知圓心為,半徑為,
當(dāng)切線過原點(diǎn)時(shí),設(shè)切線方程為,則,
∴,即切線方程為.
當(dāng)切線不過原點(diǎn)時(shí),設(shè)切線方程為,
則,∴或,
即切線方程為或.
∴切線方程為或或.
(2)由題意可知,直線與圓有公共點(diǎn),
所以圓心到直線的距離.
即,即的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個(gè),再從這5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個(gè)收購,高于或等于2250克的以80元/個(gè)收購.
請你通過計(jì)算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】連結(jié)圓周上九個(gè)不同點(diǎn)的36條弦要么染成紅色,要么染成藍(lán)色,我們稱它們?yōu)?/span>“紅邊”或“藍(lán)邊”.假定由這九個(gè)點(diǎn)中每三個(gè)點(diǎn)為頂點(diǎn)的三角形中都含有“紅邊”.證明:這九個(gè)點(diǎn)中存在四個(gè)點(diǎn),兩兩連結(jié)的六條邊都是紅邊.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0]上單調(diào)遞增,若實(shí)數(shù)a滿足f(log2|a﹣1|)>f(﹣2),則a的取值范圍是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然底數(shù)),且.
(1)當(dāng)時(shí),對任意的,都有不等式,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)是上的減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,其中為實(shí)數(shù),為正整數(shù).
(1)對任意實(shí)數(shù),證明數(shù)列不是等比數(shù)列;
(2)對于給定的實(shí)數(shù),試求數(shù)列的前項(xiàng)和;
(3)設(shè),是否存在實(shí)數(shù),使得對任意正整數(shù),都有成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=,O,M分別為AB,VA的中點(diǎn).
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V-ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分) 如圖,的外接圓的半徑為,所在的平面,,,,且,.
(1)求證:平面ADC平面BCDE.
(2)試問線段DE上是否存在點(diǎn)M,使得直線AM與平面ACD所成角的正弦值為?若存在,
確定點(diǎn)M的位置,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com