【題目】點(diǎn)M(20,40),拋物線y2=2px(p>0)的焦點(diǎn)為F,若對(duì)于拋物線上的任意點(diǎn)P,|PM|+|PF|的最小值為41,則p的值等于

【答案】42或22
【解析】解:由拋物線的定義可知:拋物線上的點(diǎn)到焦點(diǎn)距離=到準(zhǔn)線的距離, 過(guò)P做拋物線的準(zhǔn)線的垂線,垂足為D,則|PF|=|PD|,
當(dāng)M(20,40)位于拋物線內(nèi),

∴|PM|+|PF|=|PM|+|PD|,
當(dāng)M,P,D共線時(shí),|PM|+|PF|的距離最小,
由最小值為41,即20+ =41,解得:p=42,
當(dāng)M(20,40)位于拋物線外,

當(dāng)P,M,F(xiàn)共線時(shí),|PM|+|PF|取最小值,
=41,解得:p=22或58,
由當(dāng)p=58時(shí),y2=116x,則點(diǎn)M(20,40)在拋物線內(nèi),舍去,
所以答案是:42或22.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在Z上的函數(shù)f(x),對(duì)任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)= ,則f(0)+f(1)+f(2)+…+f(2017)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,PA=AB=a,E是棱PC的中點(diǎn).
(1)求證:PC⊥BD;
(2)求直線BE與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市A(看做一點(diǎn))的東偏南θ角方向 ,300km的海面P處,并以20km/h的速度向西偏北45°方向移動(dòng).臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h的速度不斷增大.
(1)問(wèn)10小時(shí)后,該臺(tái)風(fēng)是否開(kāi)始侵襲城市A,并說(shuō)明理由;
(2)城市A受到該臺(tái)風(fēng)侵襲的持續(xù)時(shí)間為多久?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AC=1, ,設(shè)∠BAC=x,記
(1)求函數(shù)f(x)的解析式及定義域;
(2)試寫(xiě)出函數(shù)f(x)的單調(diào)遞增區(qū)間,并求方程 的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2|x+2|﹣|x+1|,無(wú)窮數(shù)列{an}的首項(xiàng)a1=a.
(1)如果an=f(n)(n∈N*),寫(xiě)出數(shù)列{an}的通項(xiàng)公式;
(2)如果an=f(an1)(n∈N*且n≥2),要使得數(shù)列{an}是等差數(shù)列,求首項(xiàng)a的取值范圍;
(3)如果an=f(an1)(n∈N*且n≥2),求出數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) (a,b為實(shí)常數(shù)).
(1)當(dāng)a=b=1時(shí),證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求a與b的值;
(3)當(dāng)f(x)是奇函數(shù)時(shí),研究是否存在這樣的實(shí)數(shù)集的子集D,對(duì)任何屬于D的x、c,都有f(x)<c2﹣3c+3成立?若存在試找出所有這樣的D;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的程序框圖表示的算法中,輸入三個(gè)實(shí)數(shù)a,b,c,要求輸出的x是這三個(gè)數(shù)中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入(

A.x>c
B.c>x
C.c>b
D.c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)滿足:函數(shù)y=f(x+1)的圖象關(guān)于直線x=﹣1對(duì)稱,且當(dāng)x∈(﹣∞,0)時(shí),f(x)+xf′(x)<0成立(f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),若a=0.76f(0.76),b=log 6f(log 6),c=60.6f(60.6),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

同步練習(xí)冊(cè)答案