已知平行四邊形的兩條邊所在直線的方程分別是,, 且它的對角線的交點是M(3,3),求這個平行四邊形其它兩邊所在直線的方程.
其他兩邊所在直線的方程是3x-y-16=0,x+y-11=0.
解析試題分析:依題意,由方程組x+y?1=0,3x?y+4=0,可解得平行四邊形ABCD的頂點A的坐標,再結(jié)合對角線的交點是M(3,3),可求得C點坐標,利用點斜式即可求得其他兩邊所在直線的方程.
試題解析:聯(lián)立方程組x+y?1=0,3x?y+4=0,
解得x=?,y=,
所以平行四邊形ABCD的頂點A(?,),
設C(x0,y0),由題意,點M(3,3)是線段AC的中點,
∴x0?=6,y0+=6,
解得x0=,y0=,
∴C(,),
由已知,直線AD的斜率kAD=3.
∵直線BC∥AD,
∴直線BC的方程為3x-y-16=0,
由已知,直線AB的斜率kAB=-1,
∵直線CD∥AB,
∴直線CD的方程為x+y-11="0,"
因此,其他兩邊所在直線的方程是3x-y-16=0,x+y-11=0.
考點:1.直線的一般式方程與直線的平行關(guān)系;2.直線的一般式方程.
科目:高中數(shù)學 來源: 題型:解答題
圓內(nèi)有一點,為過點且傾斜角為的弦,
(1)當=1350時,求;
(2)當弦被點平分時,求出直線的方程;
(3)設過點的弦的中點為,求點的坐標所滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
求經(jīng)過直線的交點M,且滿足下列條件的直線方程:
(1)與直線2x+3y+5=0平行; (2)與直線2x+3y+5=0垂直.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點直線,為平面上的動點,過點作直線的垂線,垂足為,且.
(1)求動點的軌跡方程;
(2)、是軌跡上異于坐標原點的不同兩點,軌跡在點、處的切線分別為、,且,、相交于點,求點的縱坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(10分)解答下列問題:
(1)求平行于直線3x+4y-2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y-5=0且與點P(-1,0)的距離是的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com