17.若函數(shù)y=3sin(2x+φ)(-π<φ<0)的圖象向左平移$\frac{π}{6}$后得到的圖象關(guān)于y軸對稱,|φ|=( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根據(jù)三角函數(shù)的平移變換規(guī)律化簡,圖象關(guān)于y軸對稱,可得函數(shù)是偶函數(shù),可求φ的值.

解答 解:函數(shù)y=3sin(2x+φ)(-π<φ<0)的圖象向左平移$\frac{π}{6}$后得到:y=3sin[2(x+$\frac{π}{6}$)+φ]=3sin(2x+$\frac{π}{3}$+φ),
∵平移后圖象關(guān)于y軸對稱,
∴$\frac{π}{3}$+φ=$-\frac{π}{2}+kπ$(k∈Z),
∵-π<φ<0,
當(dāng)k=0時,可得φ=$-\frac{5π}{6}$,
故選:D.

點評 本題主要考查了三角函數(shù)的圖象的平移變換規(guī)律,以及偶函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)f(x)=cos2ωx的圖象向右平移$\frac{3π}{4ω}$個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在$[-\frac{π}{4},\frac{π}{6}]$上為減函數(shù),則正實數(shù)ω的最大值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖,圓柱高為h,半徑為r,不計厚度,單位:米),按計劃容積為72π立方米,且h≥2r,假設(shè)其建造費用僅與表面積有關(guān)(圓柱底部不計),已知圓柱部分每平方米的費用為2千元,半球部分每平方米4千元,設(shè)該容器的建造費用為y千元.
(Ⅰ)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
(Ⅱ)求建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖四棱錐E-ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC.
(Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)全集U={0,1,2,3,4},集合A=(1,2,3),B={2,3,4},則A∪∁UB=(  )
A.{1}B.{0,1}C.{0,1,2,3}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲、乙兩人射擊比賽,兩人平的概率是$\frac{1}{2}$,甲獲勝的概率是$\frac{1}{3}$,則甲不輸?shù)母怕蕿椋ā 。?table class="qanwser">A.$\frac{2}{5}$B.$\frac{5}{6}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=|x|B.y=x-2C.y=ex-e-xD.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.拋物線x=ay2(a≠0)的焦點坐標(biāo)是$({\frac{1}{4a},0})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=10,an-10≤an+1≤an+10(n∈N*).
(1)若{an}是等差數(shù)列,Sn=a1+a2+…+an,且Sn-10≤Sn+1≤Sn+10(n∈N*),求公差d的取值集合;
(2)若a1,a2,…,ak成的比數(shù)列,公比q是大于1的整數(shù),且a1+a2+…+ak>2017,求正整數(shù)k的最小值;
(3)若a1,a2,…,ak成等差數(shù)列,且a1+a2+…+ak=100,求正整數(shù)k的最小值及k取最小值時公差d的值.

查看答案和解析>>

同步練習(xí)冊答案