【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn),過(guò)右焦點(diǎn)軸不垂直的直線交橢圓于, 兩點(diǎn).

Ⅰ)求橢圓的方程.

Ⅱ)當(dāng)直線的斜率為時(shí),求的面積.

Ⅲ)在線段上是否存在點(diǎn),使得經(jīng), 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ)答案見(jiàn)解析.

【解析】試題分析:(1)由短軸長(zhǎng)為,由兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn)得,由此求出,即可求出橢圓方程;(2)先寫(xiě)出直線的方程,將直線方程與橢圓方程聯(lián)立,求出的坐標(biāo),從而求出,由點(diǎn)到直線的距離公式求出點(diǎn)到到直線的距離即可求三角形的面積;(3) 設(shè)在線段上存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,設(shè)出直線方程,與橢圓方程聯(lián)立,由韋達(dá)定理計(jì)算,即可求出的取值范圍.

試題解析:(1)設(shè)橢圓方程為,

根據(jù)題意得所以

所以橢圓方程為;

2)根據(jù)題意得直線方程為,

解方程組坐標(biāo)為, 計(jì)算,

點(diǎn)到直線的距離為, 所以,

3)假設(shè)在線段上存在點(diǎn),使得以為鄰邊的平行四邊形是菱形.因?yàn)橹本與軸不垂直,所以設(shè)直線的方程為

坐標(biāo)為

得,

,

計(jì)算得:,其中,

由于以為鄰邊的平行四邊形是菱形,所以,

計(jì)算得, 即,, 所以.

(可以設(shè)點(diǎn),也可以設(shè)直線得到的函數(shù)關(guān)系式)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)上存在唯一的滿足, 那么稱函數(shù)上的“單值函數(shù)”.已知函數(shù)上的“單值函數(shù)”,當(dāng)實(shí)數(shù)取最小值時(shí),函數(shù)上恰好有兩點(diǎn)零點(diǎn),則實(shí)數(shù)的取值范圍是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一塊三角形地的一角開(kāi)辟為水果園,已知角, 的長(zhǎng)度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.

(1)若圍墻、總長(zhǎng)度為200米,如何可使得三角形地塊面積最大?

(2)已知竹籬笆長(zhǎng)為米, 段圍墻高1米, 段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓的半徑垂直于直徑, 上一點(diǎn), 的延長(zhǎng)線交圓于點(diǎn),過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),連接.

(1)求證: ;

(2)若 ,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在曲線上,過(guò)原點(diǎn),且與軸的另一個(gè)交點(diǎn)為,若線段,和曲線上分別存在點(diǎn)、點(diǎn)和點(diǎn),使得四邊形(點(diǎn), , 順時(shí)針排列)是正方形,則稱點(diǎn)為曲線完美點(diǎn).那么下列結(jié)論中正確的是( ).

A. 曲線上不存在完美點(diǎn)

B. 曲線上只存在一個(gè)完美點(diǎn),其橫坐標(biāo)大于

C. 曲線上只存在一個(gè)完美點(diǎn),其橫坐標(biāo)大于且小于

D. 曲線上存在兩個(gè)完美點(diǎn),其橫坐標(biāo)均大于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若方程存在兩個(gè)不同的實(shí)數(shù)根, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,曲線C1的參數(shù)方程為(a為參數(shù)),以原點(diǎn)O為極點(diǎn),

以x軸正半軸為極軸,建立極坐標(biāo)系,曲 線C2的極坐標(biāo)方程為

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.

(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形中, , 于點(diǎn), ,且.沿折起到的位置(如圖),使

I)求證: 平面

II)求三棱錐的體積.

III)線段上是否存在點(diǎn),使得平面,若存在,指出點(diǎn)的位置并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,民用汽車(chē)的保有量也迅速增長(zhǎng).機(jī)動(dòng)車(chē)保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國(guó),尤其是大中型城市,機(jī)動(dòng)車(chē)已成為城市空氣污染的重要來(lái)源.因此,合理預(yù)測(cè)機(jī)動(dòng)車(chē)保有量是未來(lái)進(jìn)行機(jī)動(dòng)車(chē)污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),該市機(jī)動(dòng)車(chē)保有量數(shù)據(jù)如表所示.

年份

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

機(jī)動(dòng)車(chē)保有量(萬(wàn)輛)

169

181

196

215

230

(1)在圖所給的坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;

(2)建立機(jī)動(dòng)車(chē)保有量關(guān)于年份代碼的回歸方程;

(3)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017年該市機(jī)動(dòng)車(chē)保有量.

附注:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為:

.

查看答案和解析>>

同步練習(xí)冊(cè)答案