【題目】設(shè)是奇函數(shù),是偶函數(shù),且其中.
(1)求和的表達(dá)式,并求函數(shù)的值域
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個不等實根,求常數(shù)的取值范圍
【答案】(1)值域為(2)
【解析】
(1)由函數(shù)的奇偶性可得,再結(jié)合條件列方程組求解,進(jìn)而可得,利用函數(shù)單調(diào)性可求得值域;
(2)由題意得方程在區(qū)間內(nèi)恰有兩個不等實根,令,則可將方程轉(zhuǎn)化為在區(qū)間內(nèi)有唯一實根,利用函數(shù)單調(diào)性求得函數(shù)的值域,進(jìn)而可得常數(shù)的取值范圍.
(1)由已知①,
以代,得,
因為是奇函數(shù),是偶函數(shù),
所以②,
聯(lián)立①②可得,
,
又,,,于是,
函數(shù)的值域為;
(2)題意即方程在區(qū)間內(nèi)恰有兩個不等實根.
顯然不是該方程的根,所以令
由得,則原方程可變形為
易知函數(shù)為偶函數(shù),且在區(qū)間內(nèi)單調(diào)遞增,所以
且題意轉(zhuǎn)化為方程在區(qū)間內(nèi)有唯一實根(因為每一個在區(qū)間內(nèi)恰有兩個值與之對應(yīng)).
易知在區(qū)間內(nèi)單調(diào)遞減,
又時,,
所以(此時每一個,在區(qū)間內(nèi)有且僅有一個值與之對應(yīng)).
綜上所述,所求常數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面 為的中點, 面.
(1)求的長;
(2)求證:面面;
(3)求平面與平面相交所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為等腰梯形, ∥, ,垂足為, 是四棱錐的高。
(Ⅰ)證明:平面 平面;
(Ⅱ)若,60°,求四棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知等差數(shù)列{an}的首項a1≠0,前n項和為Sn,且S4+a2=2S3;等比數(shù)列{bn}滿足b1=a2,b2=a4.
(1)求證:數(shù)列{bn}中的每一項都是數(shù)列{an}中的項;
(2)若a1=2,設(shè)cn=,求數(shù)列{cn}的前n項和Tn;
(3)在(2)的條件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)積極發(fā)展電商,通過近些年工作的開展在新農(nóng)村建設(shè)和扶貧過程中起到了非常重要的作用,促進(jìn)了農(nóng)民生活富裕,為了更好地了解本地區(qū)某一特色產(chǎn)品的宣傳費(fèi) (千元)對銷量 (千件)的影響,統(tǒng)計了近六年的數(shù)據(jù)如下:
(1)若近6年的宣傳費(fèi)與銷量呈線性分布,由前5年數(shù)據(jù)求線性回歸直線方程,并寫出的預(yù)測值;
(2)若利潤與宣傳費(fèi)的比值不低于20的年份稱為“吉祥年”,在這6個年份中任意選2個年份,求這2個年份均為“吉祥年”的概率
附:回歸方程的斜率與截距的最小二乘法估計分別為,
,其中, 為, 的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科學(xué)研究表明:人類對聲音有不的感覺,這與聲音的強(qiáng)度單位:瓦平方米有關(guān)在實際測量時,常用單位:分貝來表示聲音強(qiáng)弱的等級,它與聲音的強(qiáng)度I滿足關(guān)系式:是常數(shù),其中瓦平方米如風(fēng)吹落葉沙沙聲的強(qiáng)度瓦平方米,它的強(qiáng)弱等級分貝.
已知生活中幾種聲音的強(qiáng)度如表:
聲音來源
聲音大小 | 風(fēng)吹落葉沙沙聲 | 輕聲耳語 | 很嘈雜的馬路 |
強(qiáng)度瓦平方米 | |||
強(qiáng)弱等級分貝 | 10 | m | 90 |
求a和m的值
為了不影響正常的休息和睡眠,聲音的強(qiáng)弱等級一般不能超過50分貝,求此時聲音強(qiáng)度I的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),的圖象兩相鄰對稱軸之間的距離是,若將的圖象向右平移個單位長度,所得圖象對應(yīng)的函數(shù)為奇函數(shù).
(1)求的解析式;
(2)求的對稱軸及單調(diào)增區(qū)間;
(3)若對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,(為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;
(2)已知曲線交于兩點,過點且垂直于的直線與曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正數(shù)數(shù)列的前項和滿足.
(1)求數(shù)列的通項公式;;
(2)若數(shù)列滿足,求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com